Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (3): 747-754.doi: 10.12305/j.issn.1001-506X.2021.03.19
• Systems Engineering • Previous Articles Next Articles
Chunyu HU1,2(), Weidong LIU1(
), Tianxiang YU1(
), Liyao ZHOU2(
), Chen FENG2(
)
Received:
2020-06-19
Online:
2021-03-01
Published:
2021-03-16
CLC Number:
Chunyu HU, Weidong LIU, Tianxiang YU, Liyao ZHOU, Chen FENG. Analysis of multi wave task planning model based on UAV real-time data[J]. Systems Engineering and Electronics, 2021, 43(3): 747-754.
Table 2
Initial planning scheme"
装备序号 | 第一波次 | 第二波次 | 第N波次 | ||||
作战准备 | 作战实施 | 波次转换 | 作战实施 | 波次转换 | … | 待机 | |
X1 | D2 | F32 | Z1 | F37 | Z1 | … | D2 |
X2 | D2 | F33 | Z1 | F38 | Z1 | … | D2 |
X3 | D2 | F34 | Z1 | F39 | Z1 | … | D2 |
X4 | D2 | F48 | Z2 | F51 | Z2 | … | D2 |
X5 | D2 | F47 | Z2 | F49 | Z2 | … | D2 |
X6 | D2 | F46 | Z2 | F50 | Z2 | … | D2 |
X7 | D1 | F38 | Z3 | F58 | Z3 | … | D1 |
X8 | D1 | F39 | Z3 | F59 | Z3 | … | D1 |
X9 | D1 | F40 | Z3 | F1 | Z3 | … | D1 |
X10 | D2 | F3 | Z4 | F29 | Z4 | … | D2 |
X11 | D2 | F4 | Z4 | F28 | Z4 | … | D2 |
X12 | D2 | F5 | Z4 | F30 | Z4 | … | D2 |
X13 | D1 | F44 | Z5 | F41 | Z5 | … | D1 |
X14 | D1 | F42 | Z5 | F22 | Z5 | … | D1 |
X15 | D1 | F43 | Z5 | F21 | Z5 | … | D1 |
Table 3
Final path planning scheme of part of task planning"
装备序号 | 最优规划方案 |
X1 | D2→J12→J13→J14→J15→J37→F32(第一波次)→J37→J15→J16→Z1→J16→J39→F37(第二波次)→…→(第Y波次)D2 |
X2 | D2→J12→J13→J14→J15→J37→F33(第一波次)→J37→J15→J16→Z1→J16→J39→J40→F38(第二波次)→…→(第Y波次)D2 |
X3 | D2→J12→J13→J14→J15→J37→F34(第一波次)→J37→J15→J16→Z1→J16→J39→J40→F39(第二波次)→…→(第Y波次)D2 |
X4 | D2→J3→J48→F48(第一波次)→J48→Z2→J50→F51→…→(第Y波次)D2 |
X5 | D2→J3→J48→F47(第一波次)→J48→Z2→J50→J49→F49(第二波次)→…→(第Y波次)D2 |
X6 | D2→J3→J48→J47→F46(第一波次)→J47→J48→Z2→J50→J49(第二波次)→F50→…→(第Y波次)D2 |
X7 | D1→J10→J45→J42→J40→F38(第一波次)→J40→J42→J8→J52→Z3→J61→F58(第二波次)→…→(第Y波次)D1 |
X8 | D1→J10→J45→J42→J40→F39(第一波次)→J40→J42→J8→J52→Z3→J61→F59(第二波次)→…→(第Y波次)D1 |
X9 | D1→J10→J45→J42→J40→F40(第一波次)→J40→J42→J8→J52→Z3→J52→F1(第二波次)→…→(第Y波次)D1 |
X10 | D2→J12→J13→J21→F3(第一波次)→J21→J14→J35→Z4→J35→F29(第二波次)→…→(第Y波次)D2 |
X11 | D2→J12→J13→J21→F4(第一波次)→J21→J14→J35→Z4→J35→J34→F28(第二波次)→…→(第Y波次)D2 |
X12 | D2→J12→J13→J21→F5(第一波次)→J21→J14→J35→Z4→J35→J34→J36→F30(第二波次)→…→(第Y波次)D2 |
X13 | D1→J11→J46→F44(第一波次)→J46→J44→Z5→J41→F41(第二波次)→…→(第Y波次)D1 |
X14 | D1→J11→J46→J44→F42(第一波次)→J44→Z5→J41→J18→J29→F22(第二波次)→…→(第Y波次)D1 |
X15 | D1→J11→J46→J44→F43(第一波次)→J44→Z5→J41→J18→J29→J28→F21(第二波次)→…→(第Y波次)D1 |
1 |
SHAN J C , LIU Q B . Analysis of the impact of battlefield environment on military operation effectiveness using fuzzy influence diagram[J]. International Journal of Fuzzy Systems, 2019, 21 (6): 1882- 1893.
doi: 10.1007/s40815-019-00662-6 |
2 |
CANDACE F , RONALD L J . Principle assumptions ofregression analysis: testing, techniques, and statistical reporting of imperfect data sets[J]. Advances in Developing Human Resources, 2019, 21 (4): 484- 502.
doi: 10.1177/1523422319869915 |
3 | ZHANG Y, WANG J W, YUAN B. Research on multi-satellite observation multi-region task planning based on genetic algorithm[C]//Proc.of the 3rd International Conference on Aerospace Technology, Communications and Energy Systems, 2019. |
4 | BAI X S , CAO M , YAN W S , et al. Efficient Heuristic algorithms for single-vehicle task planning with precedence constraints[J]. IEEE Trans.on Cybernetics, 2020, 4 (1): 1- 10. |
5 |
YAN F L . Gauss interference ant colony algorithm-based optimization of UAV mission planning[J]. The Journal of Supercomputing, 2020, 76 (2): 1170- 1179.
doi: 10.1007/s11227-018-2540-1 |
6 |
YAN F , ZHU X P , ZHOU Z , et al. Heterogeneous multi-unmanned aerial vehicle task planning: simultaneous attacks on targets using the Pythagorean hodograph curve[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233 (13): 4735- 4749.
doi: 10.1177/0954410019829368 |
7 |
YAO F , LI J T , CHEN Y N , et al. Task allocation strategies for cooperative task planning of multi-autonomous satellite constellation[J]. Advances in Space Research, 2019, 63 (2): 1073- 1084.
doi: 10.1016/j.asr.2018.10.002 |
8 |
赵国宏. 作战任务规划若干问题再认识[J]. 指挥与控制学报, 2017, 3 (4): 265- 272.
doi: 10.3969/j.issn.2096-0204.2017.04.0265 |
ZHAO G H . Some problems of combat mission planning[J]. Journal of Command and Control, 2017, 3 (4): 265- 272.
doi: 10.3969/j.issn.2096-0204.2017.04.0265 |
|
9 |
谢苏明, 毛万峰, 李杏. 关于作战筹划与作战任务规划[J]. 指挥与控制学报, 2017, 3 (4): 281- 285.
doi: 10.3969/j.issn.2096-0204.2017.04.0281 |
XIE S M , MAO W F , LI X . Combat planning and mission planning[J]. Journal of Command and Control, 2017, 3 (4): 281- 285.
doi: 10.3969/j.issn.2096-0204.2017.04.0281 |
|
10 | 王桐, 杨萍, 欧阳海波. 基于马尔可夫链的多波次导弹作战研究[J]. 战术导弹技术, 2011, (4): 20- 22. |
WANG T , YANG P , OUYANG H B . Research on multi wave missile operations based on Markov chain[J]. Tactical Missile Technology, 2011, (4): 20- 22. | |
11 | 汪民乐, 房茂燕. 基于改进单亲GA的多波次攻击最优火力分配[J]. 系统仿真学报, 2009, 21 (23): 7697- 7702. |
WANG M L , FANG M Y . Optimal fire distribution of multi wave attack based on improved single parent GA[J]. Journal of System Simulation, 2009, 21 (23): 7697- 7702. | |
12 | 汪宁丽, 王利平, 马豪杰, 等. 多波次导弹发射中的规划问题[J]. 数学的实践与认识, 2018, 48 (15): 247- 254. |
WANG N L , WANG L P , MA H J , et al. Planning problems in multi-wave missile launching[J]. Practice and Understanding of Mathematics, 2018, 48 (15): 247- 254. | |
13 | 周梦源, 逯伯亮, 李海友, 等. 多波次导弹发射中的规划问题[J]. 数学的实践与认识, 2018, 48 (15): 265- 275. |
ZHOU M Y , YUN B L , LI H Y , et al. Planning problems in multi-wave missile launching[J]. Mathematical Practice and Understanding, 2018, 48 (15): 265- 275. | |
14 | 孙茜. 多波次导弹发射中的规划问题[J]. 陕西理工大学学报(自然科学版), 2019, 35 (3): 81- 87. |
SUN Q . Planning problems in multi-wave missile launching[J]. Journal of Shaanxi University of Science and Technology (Natural Science Edition), 2019, 35 (3): 81- 87. | |
15 |
周爽, 邱涛. 多波次导弹发射中的规划问题[J]. 农业装备与车辆工程, 2018, 56 (11): 52- 55, 60.
doi: 10.3969/j.issn.1673-3142.2018.11.012 |
ZHOU S , QIU T . Planning in multi-wave missile launch[J]. Agricultural Equipment and Vehicle Engineering, 2018, 56 (11): 52- 55, 60.
doi: 10.3969/j.issn.1673-3142.2018.11.012 |
|
16 | SURAFEL L T . Feasibility reduction approach for hierarchical decision making with multiple objectives[J]. Operations Research Perspectives, 2019, 35 (3): e21- e28. |
17 |
NAYAK S , OJHA A . On multi-level multi-objective linear fractional programming problem with interval parameters[J]. RAIRO-Operations Research, 2019, 53 (5): 1601- 1616.
doi: 10.1051/ro/2018063 |
18 | 高金伍.不确定多层规划模型与算法[D].北京: 清华大学, 2005. |
GAO J W. Uncertain multilevel programming model and algorithm[D]. Beijing: Tsinghua University, 2005. | |
19 |
JANA D K , PRAMANIK S , MAITI M . Mean and CV reduction methods on Gaussian type-2 fuzzy set and its application to a multilevel profit transportation problem in a two-stage supply chain network[J]. Neural Computing and Applications, 2017, 28 (9): 2703- 2726.
doi: 10.1007/s00521-016-2202-2 |
20 |
REDDY D S , BABU K V G , MURTHY D L N , et al. Transportation planning aspects of a smart city-case study of GIFT city, gujarat[J]. Transportation Research Procedia, 2016, 17, 134- 144.
doi: 10.1016/j.trpro.2016.11.069 |
21 |
BRETT R A . Fixing the supply problem[J]. The Journal of Thoracic and Cardiovascular Surgery, 2018, 156 (3): 1037- 1037.
doi: 10.1016/j.jtcvs.2018.04.016 |
22 | LI J . Researchers at Hebei normal university have reported new data on chemical engineering (a multi-level programming for shale gas-water supply chains accounting for tradeoffs between economic and environmental concerns)[J]. Energy & Ecology, 2020, 4 (3): 69- 77. |
23 | CHEN Y Z , CHENG X , LI J , et al. A multi-level programming for shale gas-water supply chains accounting for tradeoffs between economic and environmental concerns[J]. Computers and Chemical Engineering, 2020, 135 (4): 35- 44. |
24 |
YANG H , MICHALE G H B . Transport bilevel programming problems: recent methodological advances[J]. Transportation Research: Part B, 2001, 35 (1): 1- 4.
doi: 10.1016/S0191-2615(00)00025-4 |
25 |
WU S H , YANG Z Z . Optimizing location of manufacturing industries in the context of economic globalization: a bi-level model based approach[J]. Physica A: Statistical Mechanics and its Applications, 2018, 501, 327- 337.
doi: 10.1016/j.physa.2018.02.042 |
26 | MERKLE D , MIDDENDORF M , DORIGO M , et al. Ant co-lony optimization 2004 MIT press 0-262-04219-3[J]. European Journal of Operational Research, 2004, 168 (1): 269- 271. |
27 |
ZITAR A , NUSEIRAT A F . Performance evaluation of genetic algorithms and evolutionary programming in optimization and machine learning[J]. Cybernetics and Systems, 2002, 33 (3): 203- 223.
doi: 10.1080/019697202753551611 |
28 | 邓键.双层规划若干问题的解法[D].吉林: 吉林大学, 2009. |
DENG J. Solutions to some problems of bilevel programming[D]. Jilin: Jilin University, 2009. | |
29 |
EMMANOUIL E , ZACHARIADI S , CHRIS T , et al. A strategy for reducing the computational complexity of local search-based methods for the vehicle routing problem[J]. Computers and Operations Research, 2010, 37 (12): 2089- 2105.
doi: 10.1016/j.cor.2010.02.009 |
30 |
TAVAKKOLI M R , SAREMI A R , ZIAEE M S . A memetic algorithm for a vehicle routing problem with backhauls[J]. Applied Mathematics and Computation, 2006, 181 (2): 1049- 1060.
doi: 10.1016/j.amc.2006.01.059 |
31 | HORBULIN V P , HULIANYTSKYI L F , SERGIENKO I V . Optimization of UAV team routes in the presence of alternative and dynamic depots[J]. Cybernetics and Systems Analysis, 2020, 56 (8): 195- 203. |
[1] | Tianye SUN, Wei SUN, Jianjun WU. UAV formation rapid assembly method based on improved Quatre algorithm [J]. Systems Engineering and Electronics, 2022, 44(9): 2840-2848. |
[2] | Jing YU, Enmi YONG, Hanyang CHEN, Dong HAO, Xiancai ZHANG. Bi-level mission planning method for multi-cooperative UAV air-to-ground attack [J]. Systems Engineering and Electronics, 2022, 44(9): 2849-2857. |
[3] | Jianfeng YANG, Heye XIAO, Liang LI, Junqiang BAI, Weihao DONG. Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism [J]. Systems Engineering and Electronics, 2022, 44(8): 2530-2539. |
[4] | Lu ZHUANG, Zhong LU, Haijing SONG, Jia ZHOU. An optimization method for development assurance level assignment of airborne system [J]. Systems Engineering and Electronics, 2022, 44(8): 2688-2698. |
[5] | Tiansu LUO, Lingfeng ZHAO, Yunwen FENG, Xiaofeng XUE, Cheng LU. Super large-scale satellite constellation multi-level backup strategy based on METRIC theory [J]. Systems Engineering and Electronics, 2022, 44(7): 2181-2190. |
[6] | Bo LI, Jiahao ZHOU, Minmin LIU, Pinchao ZHU. Feature selection for welding defect assessment based on improved NSGA3 [J]. Systems Engineering and Electronics, 2022, 44(7): 2211-2218. |
[7] | Haobo FENG, Qiao HU, Zhenyi ZHAO. AUV swarm path planning based on elite family genetic algorithm [J]. Systems Engineering and Electronics, 2022, 44(7): 2251-2262. |
[8] | Shaolong YANG, Jin HUANG, Xianbo XIANG, Weichao LI. Optimization of USV area coverage path planning based on confidence ellipsoid [J]. Systems Engineering and Electronics, 2022, 44(7): 2263-2269. |
[9] | Yunwen FENG, Junyu CHEN, Cheng LU. Research on civil aircraft spare parts multi-region support network model [J]. Systems Engineering and Electronics, 2022, 44(5): 1553-1561. |
[10] | Yuanjie LU, Zhimin LIU, Zhixiao SUN, Dong KAN. Model-based integrated evaluation of UAV system architecture [J]. Systems Engineering and Electronics, 2022, 44(4): 1239-1245. |
[11] | Peng JIN, Xiaoxi TANG. Multi-satellite emergency task scheduling with merging mechanism [J]. Systems Engineering and Electronics, 2022, 44(4): 1270-1281. |
[12] | Jianwei SUN, Chao WANG, Qingzhan SHI, Wenbo REN, Zekun YAO, Naichang YUAN. Intelligent optimization of phase-modulation waveform based on genetic algorithm [J]. Systems Engineering and Electronics, 2022, 44(3): 722-729. |
[13] | Yuanyuan ZHANG, Yang GAO, Peng ZHU, Jintao LIU, Shushan GU. UAV reconnaissance tactical planning based on colored Petri nets [J]. Systems Engineering and Electronics, 2022, 44(3): 900-907. |
[14] | Weijian PANG, Hui LI, Qian HUANG, Peng LI, Xianming MA. Review on ontology-based task planning for unmanned systems [J]. Systems Engineering and Electronics, 2022, 44(3): 908-920. |
[15] | Xuping GU, Daquan TANG. Hierarchical cooperative navigation of UAV swarm based on federated filtering algorithm [J]. Systems Engineering and Electronics, 2022, 44(3): 967-976. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||