Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (1): 223-229.doi: 10.3969/j.issn.1001-506X.2020.01.30
Previous Articles Next Articles
Chen LI(), Jun'an YANG(
), Hui LIU(
)
Received:
2019-01-18
Online:
2020-01-01
Published:
2019-12-23
Supported by:
CLC Number:
Chen LI, Jun'an YANG, Hui LIU. Modulation recognition algorithm based on information entropy and GA-ELM[J]. Systems Engineering and Electronics, 2020, 42(1): 223-229.
Table 1
Average recognition rate %"
调制类型 | 识别结果/dB | |||||||||
-2 | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | |
2ASK | 80.50 | 84.50 | 89.50 | 97.50 | 98.00 | 98 | 100 | 100 | 100 | 100 |
2FSK | 84 | 89.50 | 93.50 | 97 | 99 | 99 | 100 | 100 | 100 | 100 |
2PSK | 91.50 | 92 | 94 | 96 | 97.50 | 98 | 99 | 100 | 100 | 100 |
4ASK | 92 | 93.50 | 94.50 | 95 | 94.50 | 99.50 | 97 | 100 | 100 | 100 |
4FSK | 99.50 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
4PSK | 89 | 93 | 95.50 | 99 | 100 | 99 | 99.50 | 100 | 100 | 100 |
16QAM | 90 | 95 | 98 | 100 | 99.50 | 98.50 | 100 | 100 | 100 | 100 |
32QAM | 91 | 97 | 99 | 99.50 | 100 | 100 | 100 | 100 | 100 | 100 |
AM | 99.50 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
FM | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
PM | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
1 | 刘明骞.非合作通信中信号检测及调制识别的关键技术研究[D].西安:西安电子科技大学, 2013. |
LIU M Q. Research on signals detection and modulation recognition technnologies of Non-cooperative communication[D]. Xi'an: Xidian University, 2013. | |
2 |
TAYAKOUT H , DAYOUB I , GHANEM K , et al. Automatic modulation classification for D-STBC cooperative relaying networks[J]. IEEE Wireless Communications Letters, 2018, 7 (5): 780- 783.
doi: 10.1109/LWC.2018.2824813 |
3 |
DOBRE O A , ABDI A , BAR-NESS Y , et al. Survey of automatic modulation classification techniques:classical approaches andnew trends[J]. IET Communications, 2007, 1 (2): 137- 156.
doi: 10.1049/iet-com:20050176 |
4 |
CHANG D C , SHIH P K . Cumulants-based modulation classification technique in multipath fading channels[J]. IET Communic-ations, 2015, 9 (6): 828- 835.
doi: 10.1049/iet-com.2014.0773 |
5 | HASSANPOUR S, PEZESHK A M, BEHNIA F. A robust algorithm based on wavelet transform for recognition of binary digital modulations[C]//Proc.of the 38th International Conference on Telecommunications & Signal Processing, 2015: 508-512. |
6 |
KHARBECH S , DAYOUB I , SIMON E , et al. On classifiers for blind feature-based automatic modulation classification over MI-MO Channels[J]. IET Communications, 2016, 10 (7): 790- 795.
doi: 10.1049/iet-com.2015.1124 |
7 |
ZHE X , YONG G . Method to reduce the signal-to-noise ratio required for modulation recognition based on logarithmic properties[J]. IET Communications, 2018, 12 (11): 1360- 1366.
doi: 10.1049/iet-com.2018.0030 |
8 | GHASEMI S, GANGAL A. An effective algorithm for automatic modulation recognition[C]//Proc.of the 22nd Conference on Signal Processing and Communications Applications, 2014: 903-906. |
9 | SHERME A E . A novel method for automatic modulation recognition[J]. Applied Soft Computing, 2012, 12 (1): 453- 461. |
10 | WANG H, GUO L L. A new method of automatic modulation recognition based on dimension reduction[C]//Proc.of the Forum on Cooperative Positioning and Service, 2017: 316-320. |
11 |
党月芳, 徐启建, 张杰, 等. 高阶累积量和分形理论在信号调制识别中的应用研究[J]. 信号处理, 2013, 29 (6): 761- 765.
doi: 10.3969/j.issn.1003-0530.2013.06.013 |
DANG Y F , XU Q J , ZHANG J , et al. Research on modulation classification based on high-order cumulants and fractal theory[J]. Journal of Signal Processing, 2013, 29 (6): 761- 765.
doi: 10.3969/j.issn.1003-0530.2013.06.013 |
|
12 |
SHI C T . Signal pattern recognition based on fractal features and machine learning[J]. Applied Sciences, 2018, 8 (8): 1327.
doi: 10.3390/app8081327 |
13 | HUANG J Y, Pan H X, Bi S H. Bispectrum entropy feature extraction and its application for fault diagnosis of gearbox[C]//Proc.of the International Conference on Fuzzy Systems, 2010: 1-6. |
14 | 徐伟, 姜罗罗, 汪秉宏. 基于功率谱熵特征提取的脑电波大脑年龄预测[J]. 科技导报, 2018, 36 (8): 40- 47. |
XU W , JIANG L L , WANG B H . The b-rain age prediction based on the power spectrum entropy feature extraction[J]. Science & Technology Review, 2018, 36 (8): 40- 47. | |
15 | CHAI X K, WENG X H, ZHANG Z M, et al. Quantitative EEG in mild cognitive impairment and Alzheimer's disease by AR-spectral and multi-scale entropy analysis[M]. World Congress on Medical Physics and Biomedical Engineering, 2018, 159-163. |
16 | ZHANG Z, LI Y B, ZHU X L, et al. A method for modulation recognition based on entropy features and random forest[C]//Proc.of the International Conference on Software Quality, Reliability and Security Companion, 2017: 243-246. |
17 |
ZHANG Z , LI Y B , JIN S S , et al. Modulation signal recognition based on information entropy and ensemble learning[J]. Entropy, 2018, 20 (3): 198- 198.
doi: 10.3390/e20030198 |
18 |
WANG H , GUO L L , DOU Z , et al. A new method of cognitive signal recognition based on hybrid information entropy and D-S evidence theory[J]. Mobile Net-works and Applications, 2018, 23 (4): 677- 685.
doi: 10.1007/s11036-018-1000-8 |
19 | HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: a new learning scheme of feed forward neural networks[C]//Proc.of the IEEE International Joint Conference on Neural Networks, 2004: 985-990. |
20 | CHEN C , JIN X , JIANG B , et al. Optimizing extreme learning machine via generalized Hebbian learning and intrinsic plasticity learning[J]. Neural Processing Letters, 2018, 49 (3): 1593- 1609. |
21 |
HUANG G B , CHEN L , SIEW C K . Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Trans.on Neural Networks, 2006, 17 (4): 879- 892.
doi: 10.1109/TNN.2006.875977 |
22 |
NIU P , MA Y , LI M , et al. A Kind of Parameters self-adjusting extreme learning machine[J]. Neural Processing Letters, 2016, 44 (3): 813- 830.
doi: 10.1007/s11063-016-9496-z |
23 |
KAUATI A , PEREIRA W C A , CAMPO-S M L R . Mean scatterer space estimation from ultrasound signals combining singular spectral analysis and entropy[J]. Research on Biomedical Engineering, 2018, 34 (2): 157- 165.
doi: 10.1590/2446-4740.02618 |
24 |
WANG Y G , CAO F L , YUAN Y B . A study on effectiveness of extreme learning machine[J]. Neurocomputing, 2011, 74 (16): 2483- 2490.
doi: 10.1016/j.neucom.2010.11.030 |
25 | TANG X , HAN M . Partial Lanczos extreme learning machine for single-output regression problems[J]. Neurocomputing, 2009, 72 (13/15): 3066- 3076. |
26 | LOBO F G, GOLDBERG D E, PELIKA-N M. Time complexity of genetic algorithms on exponentially scaled problems[C]//Proc.of the Conference on Genetic and Evolutionary Computation, 2000: 151-158. |
27 | 宋丽辉, 张靓. 基于极端学习机的数字通信调制识别[J]. 激光杂志, 2016, 37 (3): 119- 122. |
SONG L H , ZHANG L . Digital communication modulation recognition based on extreme learning machine[J]. Laser Journal, 2016, 37 (3): 119- 122. |
[1] | Tiansu LUO, Lingfeng ZHAO, Yunwen FENG, Xiaofeng XUE, Cheng LU. Super large-scale satellite constellation multi-level backup strategy based on METRIC theory [J]. Systems Engineering and Electronics, 2022, 44(7): 2181-2190. |
[2] | Haobo FENG, Qiao HU, Zhenyi ZHAO. AUV swarm path planning based on elite family genetic algorithm [J]. Systems Engineering and Electronics, 2022, 44(7): 2251-2262. |
[3] | Bowei QIN, Lei JIANG, Hua XU, Zisen QI. Modulation recognition algorithm based on residual generation adversarial network [J]. Systems Engineering and Electronics, 2022, 44(6): 2019-2026. |
[4] | Yunwen FENG, Junyu CHEN, Cheng LU. Research on civil aircraft spare parts multi-region support network model [J]. Systems Engineering and Electronics, 2022, 44(5): 1553-1561. |
[5] | Zhangang YANG, Haiyi XU, Boyuan CHENG, Xudong SHI. Aviation generator eccentricity fault diagnosis based on FWA-DBN [J]. Systems Engineering and Electronics, 2022, 44(5): 1757-1764. |
[6] | Yingqi LU, Chengli FAN, Qiang FU, Xiaowen ZHU, Wei LI. Missile defense target threat assessment based on improved similarity measure and information entropy of IFRS [J]. Systems Engineering and Electronics, 2022, 44(4): 1230-1238. |
[7] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
[8] | Jie ZHANG, Lihua YANG, Qian NIE. Novel time-varying channel prediction method based on stacked ELM [J]. Systems Engineering and Electronics, 2022, 44(2): 662-667. |
[9] | Xing LIU, Wenshuang WANG, Jianyin ZHAO, Min ZHU. Research on an adaptive online incremental ELM fault diagnosis model [J]. Systems Engineering and Electronics, 2021, 43(9): 2678-2687. |
[10] | Xinping MI, Xihong CHEN, Zan LIU, Yongjin LIU, Qiang LIU. Bispectrum feature recognition of radar signal based on entropy evaluation and modal decomposition [J]. Systems Engineering and Electronics, 2021, 43(8): 2116-2123. |
[11] | Chaowei SHI, Xiangru MENG, Qiaoyan KANG, Yuze SU. Virtual network topology reconfiguration approach based on hybrid traffic prediction [J]. Systems Engineering and Electronics, 2021, 43(5): 1382-1388. |
[12] | Yunhao SHI, Hua XU, Wanze ZHENG, Yinghui LIU. Few-shot modulation recognition method based on ensemble learning and feature dimension reduction [J]. Systems Engineering and Electronics, 2021, 43(4): 1099-1109. |
[13] | Dongtao WEI, Xiaodong LIU, Peng LI, Yujin CHEN. Research on effectiveness evaluation method of equipment system based on node importance and improved information entropy [J]. Systems Engineering and Electronics, 2021, 43(12): 3614-3623. |
[14] | Zihao SONG, Wei CHENG, Cenxin PENG, Xiaobai LI. Modulation recognition method based on CWD and residual shrinkage network [J]. Systems Engineering and Electronics, 2021, 43(11): 3371-3379. |
[15] | Leilei ZHANG, Long XIE, Xu GAO, Tianyu SUN, Feng ZHANG. Research on synthetic reliability assessment method for high-value ammunition [J]. Systems Engineering and Electronics, 2021, 43(11): 3399-3404. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||