Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (9): 2678-2687.doi: 10.12305/j.issn.1001-506X.2021.09.39
• Reliability • Previous Articles Next Articles
Xing LIU1, Wenshuang WANG1,*, Jianyin ZHAO1, Min ZHU2
Received:
2020-08-05
Online:
2021-08-20
Published:
2021-08-26
Contact:
Wenshuang WANG
CLC Number:
Xing LIU, Wenshuang WANG, Jianyin ZHAO, Min ZHU. Research on an adaptive online incremental ELM fault diagnosis model[J]. Systems Engineering and Electronics, 2021, 43(9): 2678-2687.
Table 3
Comparison of UCI data set experimental diagnostic performance"
数据集 | 评价指标 | CI-ELM | COAIOS-ELM |
Diabetes | G-mean | 0.410 4±0.073 4 | 0.414 6±0.145 2 |
F-measure(micro) | 0.514 1±0.021 5 | 0.560 1±0.026 5 | |
F-measure(macro) | 0.463 1±0.045 1 | 0.488 4±0.082 2 | |
训练时间/s | 0.008 2 | 0.087 7 | |
测试时间/s | 3.28E-04 | 3.03E-04 | |
Ionosphere | G-mean | 0.719 5±0.045 4 | 0.801 1±0.043 3 |
F-measure(micro) | 0.807 4±0.026 4 | 0.866 7±0.025 8 | |
F-measure(macro) | 0.766 3±0.035 8 | 0.841 1±0.034 4 | |
训练时间/s | 0.006 7 | 0.010 4 | |
测试时间/s | 2.75E-04 | 2.16E-04 | |
WBC | G-mean | 0.913 9±0.020 7 | 0.948 1±0.013 4 |
F-measure(micro) | 0.905 1±0.010 3 | 0.951 3±0.011 1 | |
F-measure(macro) | 0.899 3±0.008 8 | 0.946 7±0.012 3 | |
训练时间/s | 0.023 1 | 0.012 5 | |
测试时间/s | 1.82E-04 | 2.20E-04 | |
Cancer | G-mean | 0.923 8±0.018 2 | 0.968 5±0.015 2 |
F-measure(micro) | 0.918 7±0.014 7 | 0.970 1±0.012 1 | |
F-measure(macro) | 0.913 2±0.019 6 | 0.967 2±0.013 4 | |
训练时间/s | 0.012 5 | 0.007 8 | |
测试时间/s | 2.31E-04 | 2.30E-04 |
Table 5
Comparison of Biquad low-pass filter circuit experimental diagnostic performance"
评价指标 | CI-ELM | COAIOS-ELM |
G-mean | 0.883 2±0.062 4 | 0.950 1±0.017 5 |
F-measure(micro) | 0.894 1±0.051 7 | 0.952 1±0.016 9 |
F-measure(macro) | 0.896 3±0.050 7 | 0.952 5±0.016 4 |
训练时间/s | 0.880 5 | 0.895 5 |
测试时间/s | 0.894 0 | 0.902 0 |
1 |
LIU X , LIN S B , FANG J , et al. Is extreme learning machine feasible? A theoretical assessment(Part Ⅰ)[J]. IEEE Trans.on Neural Networks and Learning Systems, 2015, 26 (1): 7- 20.
doi: 10.1109/TNNLS.2014.2335212 |
2 |
LIU X , LIN S B , FANG J , et al. Is extreme learning machine feasible? A theoretical assessment (Part Ⅱ)[J]. IEEE Trans.on Neural Networks and Learning Systems, 2015, 26 (1): 21- 34.
doi: 10.1109/TNNLS.2014.2336665 |
3 |
ZHAO L , ZHU J . Learning from correlation with extreme learning machine[J]. Tsinghua Science and Technology, 2019, 10 (12): 3635- 3645.
doi: 10.1007/s13042-019-00949-y |
4 |
RAFAELA C , FREITAS D , JANDERSON F , et al. Gauss-Seidel extreme learning machines[J]. SN Computer Science, 2020, 1 (4): 220- 248.
doi: 10.1007/s42979-020-00232-w |
5 | CUI D S, HU K, ZHANG G H, et al. Target coding for extreme learning machine[C]//Proc. of the ELM-2017, 2019, 10: 292-303. |
6 | CUI Y X, ZHAI H J, WANG X Z. Extreme learning machine based on cross entropy[C]//Proc. of the International Confe-rence on Machine Learning and Cybernetics (ICMLC), 2016: 1066-1071. |
7 |
JIANG M C , PAN Z , LI N S . Multi-label text categorization using L21-norm minimization extreme learning machine[J]. Neurocomputing, 2017, 261, 4- 10.
doi: 10.1016/j.neucom.2016.04.069 |
8 | ISMAIL N , OTHMAN Z A , SAMSUDIN N A . Regularization activation function for extreme learning machine[J]. International Journal of Advanced Computer Science and Applications, 2019, 10 (3): 241- 248. |
9 | XU R , LIANG X , QI J S , et al. Advances and trends in extreme learning machine[J]. Chinese Journal of Computers, 2019, 42 (7): 1640- 1670. |
10 |
LU J J , HUANG J Q , LU F . Sensor fault diagnosis for aero engine based on ovine sequential extreme learning machine with memory principle[J]. Energies, 2017, 10 (1): 39- 53.
doi: 10.3390/en10010039 |
11 | MAO W T , HE L , YAN Y J , et al. Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine[J]. Mechanical Systems & Signal Processing, 2016, 83, 450- 473. |
12 |
ZHANG H S , LU H . Augmented quaternion extreme learning machine[J]. IEEE Access, 2019, 7, 90842- 90850.
doi: 10.1109/ACCESS.2019.2925893 |
13 |
SALMAN H . Text classification based on weighted extreme learning machine[J]. Ibn AL-Haitham Journal for Pure and Applied Science, 2019, 32 (1): 203.
doi: 10.30526/32.1.1978 |
14 |
LIANG N Y , HUANG G B , SARATCHANDRAN P , et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Trans.on Neural Networks, 2006, 17 (6): 1411- 1423.
doi: 10.1109/TNN.2006.880583 |
15 |
WANG X Y , HAN M . Online sequential extreme learning machine with kernels for nonstationary time series prediction[J]. Neurocomputing, 2014, 145, 90- 97.
doi: 10.1016/j.neucom.2014.05.068 |
16 |
GUO L , HAO J H , LIU M . An incremental extreme learning machine for online sequential learning problems[J]. Neurocomputing, 2014, 128, 50- 58.
doi: 10.1016/j.neucom.2013.03.055 |
17 |
SOARES S G , ARAUJO R . An adaptive ensemble of online extreme learning machines with variable forgetting factor for dynamic system prediction[J]. Neurocomputing, 2016, 171, 693- 707.
doi: 10.1016/j.neucom.2015.07.035 |
18 |
ZHAO J W , WANG Z H , PARK D S . Online sequential extreme learning machine with forgetting mechanism[J]. Neurocomputing, 2012, 87, 79- 89.
doi: 10.1016/j.neucom.2012.02.003 |
19 | ZHOU X R , LIU Z J , ZHU C X . Online regularized and kernelized extreme learning machines with forgetting mechanism[J]. Mathematical Problems in Engineering, 2014, 2014, 938548. |
20 |
ZHOU X R , WANG C S . Cholesky factorization based online regularized and kernelized extreme learning machines with forgetting mechanism[J]. Neurocomputing, 2016, 174, 1147- 1155.
doi: 10.1016/j.neucom.2015.10.033 |
21 | MAO W T , WANG J W , WANG L Y , et al. Online sequential prediction for nonstationary time series with new weight-setting strategy using extreme learning machine[J]. Mathematical Problems in Engineering, 2015, 484093. |
22 |
WANG X Y , HAN M . Improved extreme learning machine for multivariate time series online sequential prediction[J]. Engineering Applications of Artificial Intelligence, 2015, 40, 28- 36.
doi: 10.1016/j.engappai.2014.12.013 |
23 |
HUANG G B , CHEN L , SIEW C K. , et al. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Trans.on Neural Networks, 2006, 17 (4): 879- 892.
doi: 10.1109/TNN.2006.875977 |
24 | HUANG G B , CHEN L . Enhanced random search based incremental extreme learning machine[J]. Neurocomputing, 2008, 71 (16): 3460- 3468. |
25 |
FENG G , HUANG G B , LIN Q . Error minimized extreme learning machine with growth of hidden nodes and incremental learning[J]. IEEE Trans.on neural networks, 2009, 20 (8): 1352- 1357.
doi: 10.1109/TNN.2009.2024147 |
26 |
YE Y B , QIN Y . QR factorization based incremental extreme learning machine with growth of hidden nodes[J]. Pattern Recog- nition Letters, 2015, 65, 177- 183.
doi: 10.1016/j.patrec.2015.07.031 |
27 | HUANG G B , CHEN L . Convex incremental extreme learning machine[J]. Neurocomputing, 2007, 70 (16/18): 3056- 3062. |
28 |
ZHAO Z T , CHEN Z Y , CHEN Y Q . A class incremental extreme learning machine for activity recognition[J]. Cognitive Computation, 2014, 6 (3): 423- 431.
doi: 10.1007/s12559-014-9259-y |
29 | 王诗琦, 赵书敏. 变长增量型极限学习机及其泛化性能研究[J]. 系统工程理论与实践, 2016, 39 (12): 2716- 2720. |
WANG S Q , ZHAO S M . Research of variable length incremental extreme learning machine and generalization perfor-mance[J]. Application Research of Computers Practice, 2016, 39 (12): 2716- 2720. | |
30 |
PHOUNGPHO P , ZHANG Y , ZHAO Y C . Robust multiclass classification for learning from imbalanced biomedical data[J]. Tsinghua Science and Technology, 2012, 17 (6): 619- 628.
doi: 10.1109/TST.2012.6374363 |
[1] | Zhangang YANG, Haiyi XU, Boyuan CHENG, Xudong SHI. Aviation generator eccentricity fault diagnosis based on FWA-DBN [J]. Systems Engineering and Electronics, 2022, 44(5): 1757-1764. |
[2] | Jie ZHANG, Lihua YANG, Qian NIE. Novel time-varying channel prediction method based on stacked ELM [J]. Systems Engineering and Electronics, 2022, 44(2): 662-667. |
[3] | Chaowei SHI, Xiangru MENG, Qiaoyan KANG, Yuze SU. Virtual network topology reconfiguration approach based on hybrid traffic prediction [J]. Systems Engineering and Electronics, 2021, 43(5): 1382-1388. |
[4] | Xing LIU, Houqing XIONG, Jianyin ZHAO, Min ZHU. State prediction method of online non-stationary dynamic system based on improved sparse KELM [J]. Systems Engineering and Electronics, 2020, 42(9): 2022-2032. |
[5] | Min ZHU, Qi LIU, Xing LIU, Qing XU. Fault detection method for avionics based on LMKL and OC-ELM [J]. Systems Engineering and Electronics, 2020, 42(6): 1424-1432. |
[6] | Chen LI, Jun'an YANG, Hui LIU. Modulation recognition algorithm based on information entropy and GA-ELM [J]. Systems Engineering and Electronics, 2020, 42(1): 223-229. |
[7] | FANG Hao, LI Aihua, PAN Yulong, WANG Xuejin, HE Chuan, WU Yuanjiang. Evaluation for infrared scene simulation based on self-learning framework [J]. Systems Engineering and Electronics, 2019, 41(2): 266-272. |
[8] | XIE Haoyu, QIU Jing, YANG Peng. Testability index allocation method considering unit mutual test [J]. Systems Engineering and Electronics, 2019, 41(12): 2899-2904. |
[9] | ZHANG Dongdong, SUN Rui, GAO Jun. Target tracking algorithm based on extreme learning machine and multiple kernel boosting learning [J]. Systems Engineering and Electronics, 2017, 39(9): 2149-2156. |
[10] | MA Long, DAI Chaofan, PEI Xin, HUANG Chao, ZHANG Hongyan, SU Zhigang. Fault detection method for redundant configuration of MEMS gyroscope [J]. Systems Engineering and Electronics, 2017, 39(10): 2298-2304. |
[11] | ZHANG Wei, XU Aiqiang, PING Dianfa. Nonlinear system online identification based on kernel sparse learning#br# algorithm with adaptive regulation factor [J]. Systems Engineering and Electronics, 2017, 39(1): 223-230. |
[12] | ZHAO Yu-xin, CHANG Shuai, WAN Cheng-cheng. Software reliability growth model considering fault detection effort and fault correction effort [J]. Systems Engineering and Electronics, 2015, 37(4): 969-973. |
[13] | DU Zhan-long, LI Xiao-min, XI Lei-ping, ZHANG Jin-zhong, LIU Xin-hai. Multi-class probabilistic extreme learning machine and its application in remaining useful life prediction [J]. Systems Engineering and Electronics, 2015, 37(12): 2777-2784. |
[14] | FENG Li-yuan, YAO Xu-liang, CAO Ran, ZOU Ai-li. Reliability and safety analysis of repairable control method based on distributed systems [J]. Systems Engineering and Electronics, 2015, 37(11): 2663-2668. |
[15] | WANG Jiawei, SHEN Yi, WANG Zhenhua. Fault detection for nonlinear switched systems using unknown input observers [J]. Systems Engineering and Electronics, 2015, 37(10): 2322-2328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||