Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (6): 1424-1432.doi: 10.3969/j.issn.1001-506X.2020.06.29
Min ZHU1(), Qi LIU2(
), Xing LIU1(
), Qing XU3(
)
Received:
2019-08-22
Online:
2020-06-01
Published:
2020-06-01
Supported by:
CLC Number:
Min ZHU, Qi LIU, Xing LIU, Qing XU. Fault detection method for avionics based on LMKL and OC-ELM[J]. Systems Engineering and Electronics, 2020, 42(6): 1424-1432.
Table 2
Experimental results of OCC on UCI datasets"
数据集 | 算法 | F1 | AUC | G-mean | 准确率 | 参数取值 |
Ecoli | SVDD | 0.448 3 | 0.807 9 | 0.601 8 | 0.920 2 | σ=3.439 5 |
PCA | 0.342 5 | 0.774 1 | 0.421 3 | 0.736 5 | n=3 | |
OC-SVM | 0.459 8 | 0.816 2 | 0.520 6 | 0.797 7 | γ=0.047 5 | |
OC-KELM | 0.778 4 | 0.903 2 | 0.780 3 | 0.960 5 | C=1, σ=3.223 5 | |
LMKAD | 0.594 8 | 0.857 8 | 0.633 4 | 0.865 8 | - | |
LMK-OC-ELM-so | 0.782 4 | 0.896 3 | 0.783 4 | 0.962 1 | C=0.1 | |
LMK-OC-ELM-r | 0.564 3 | 0.829 4 | 0.605 1 | 0.817 1 | C=0.001 | |
LMK-OC-ELM-sig | 0.793 1 | 0.894 2 | 0.793 4 | 0.964 7 | C=0.1 | |
Sonar | SVDD | 0.584 2 | 0.623 6 | 0.616 0 | 0.559 5 | σ=17.438 5 |
PCA | 0.532 2 | 0.551 4 | 0.569 2 | 0.476 0 | n=3 | |
OC-SVM | 0.570 3 | 0.617 9 | 0.593 9 | 0.570 4 | γ=0.002 5 | |
OC-KELM | 0.513 3 | 0.483 2 | 0.575 2 | 0.352 0 | C=0.01, σ=8.439 1 | |
LMKAD | 0.573 1 | 0.621 3 | 0.594 3 | 0.583 9 | - | |
LMK-OC-ELM-so | 0.598 0 | 0.679 1 | 0.601 4 | 0.691 4 | C=10 | |
LMK-OC-ELM-r | 0.542 0 | 0.582 3 | 0.569 9 | 0.560 9 | C=1 | |
LMK-OC-ELM-sig | 0.605 9 | 0.648 9 | 0.638 6 | 0.528 0 | C=1 | |
Diabetes | SVDD | 0.686 0 | 0.601 7 | 0.710 4 | 0.590 3 | σ=3.104 0 |
PCA | 0.667 5 | 0.572 6 | 0.693 2 | 0.560 7 | n=6 | |
OC-SVM | 0.662 6 | 0.575 8 | 0.684 7 | 0.565 1 | γ=0.007 | |
OC-KELM | 0.678 7 | 0.608 5 | 0.696 8 | 0.599 1 | C=0.1, σ=2.249 2 | |
LMKAD | 0.672 1 | 0.614 7 | 0.684 3 | 0.610 0 | - | |
LMK-OC-ELM-so | 0.690 8 | 0.607 4 | 0.715 6 | 0.596 0 | C=0.1 | |
LMK-OC-ELM-r | 0.692 0 | 0.607 1 | 0.717 7 | 0.595 5 | C=0.1 | |
LMK-OC-ELM-sig | 0.702 3 | 0.627 6 | 0.722 8 | 0.623 6 | C=0.01 | |
Liver | SVDD | 0.414 1 | 0.527 0 | 0.474 5 | 0.394 3 | σ=2.817 9 |
PCA | 0.422 1 | 0.531 7 | 0.490 1 | 0.377 9 | n=5 | |
OC-SVM | 0.411 7 | 0.508 2 | 0.487 6 | 0.330 0 | γ=0.012 6 | |
OC-KELM | 0.421 0 | 0.522 6 | 0.497 6 | 0.344 3 | C=0.01, σ=1.878 6 | |
LMKAD | 0.419 9 | 0.530 1 | 0.486 4 | 0.380 5 | - | |
LMK-OC-ELM-so | 0.422 2 | 0.524 2 | 0.498 9 | 0.345 8 | C=0.001 | |
LMK-OC-ELM-r | 0.421 5 | 0.527 4 | 0.493 2 | 0.362 9 | C=0.01 | |
LMK-OC-ELM-sig | 0.429 0 | 0.540 0 | 0.500 4 | 0.378 1 | C=0.1 | |
Spectf | SVDD | 0.372 4 | 0.739 3 | 0.441 7 | 0.688 3 | σ=9.644 2 |
PCA | 0.386 0 | 0.721 5 | 0.428 7 | 0.750 9 | n=3 | |
OC-SVM | 0.375 4 | 0.727 7 | 0.427 7 | 0.724 5 | γ=0.013 1 | |
OC-KELM | 0.370 5 | 0.752 9 | 0.453 6 | 0.658 1 | C=0.01, σ=5.526 6 | |
LMKAD | 0.414 4 | 0.779 3 | 0.461 0 | 0.723 4 | - | |
LMK-OC-ELM-so | 0.413 2 | 0.747 0 | 0.457 1 | 0.768 9 | C=1 | |
LMK-OC-ELM-r | 0.404 8 | 0.741 8 | 0.450 7 | 0.756 8 | C=0.1 | |
LMK-OC-ELM-sig | 0.426 9 | 0.752 5 | 0.467 3 | 0.778 7 | C=0.1 | |
Abalone | SVDD | 0.449 8 | 0.659 3 | 0.453 6 | 0.744 1 | σ=3.672 1 |
PCA | 0.478 9 | 0.715 5 | 0.544 6 | 0.597 1 | n=7 | |
OC-SVM | 0.465 1 | 0.700 0 | 0.531 3 | 0.580 7 | γ=0.010 8 | |
OC-KELM | 0.452 7 | 0.686 0 | 0.520 3 | 0.563 1 | C=1, σ=1.419 9 | |
LMKAD | 0.500 8 | 0.736 4 | 0.561 0 | 0.632 0 | - | |
LMK-OC-ELM-so | 0.525 6 | 0.732 2 | 0.548 4 | 0.730 9 | C=10-5 | |
LMK-OC-ELM-r | 0.462 9 | 0.697 0 | 0.528 0 | 0.581 1 | C=0.000 1 | |
LMK-OC-ELM-sig | 0.506 4 | 0.737 1 | 0.562 2 | 0.643 3 | C=10-5 | |
Breast | SVDD | 0.882 2 | 0.894 7 | 0.888 4 | 0.898 6 | σ=0.941 8 |
PCA | 0.873 4 | 0.876 6 | 0.873 5 | 0.876 2 | n=7 | |
OC-SVM | 0.924 4 | 0.929 0 | 0.925 6 | 0.930 7 | γ=0.031 6 | |
OC-KELM | 0.934 9 | 0.939 0 | 0.936 9 | 0.941 2 | C=0.1, σ=0.638 9 | |
LMKAD | 0.937 8 | 0.941 4 | 0.939 6 | 0.943 6 | - | |
LMK-OC-ELM-so | 0.945 1 | 0.948 2 | 0.946 6 | 0.950 0 | C=0.000 1 | |
LMK-OC-ELM-r | 0.925 0 | 0.930 3 | 0.927 6 | 0.932 9 | C=0.000 1 | |
LMK-OC-ELM-sig | 0.945 8 | 0.948 8 | 0.947 2 | 0.950 7 | C=10-6 |
Table 3
Indicator values of different algorithms"
算法 | F1 | AUC | G-mean | 准确率 | 平均训练时间/s | 平均测试时间/s |
SVDD | 0.922 2±0.030 7 | 0.885 4±0.028 8 | 0.923 8±0.028 8 | 0.886 5±0.039 8 | 0.031 4 | 0.006 9 |
PCA | 0.918 5±0.020 9 | 0.912 6±0.018 2 | 0.921 0±0.019 7 | 0.883 5±0.028 0 | 0.060 7 | 0.004 4 |
OC-SVM | 0.922 8±0.028 6 | 0.898 1±0.020 5 | 0.924 4±0.026 8 | 0.888 1±0.037 3 | - | - |
OC-KELM | 0.925 0±0.019 2 | 0.930 5±0.014 9 | 0.927 8±0.018 7 | 0.893 1±0.029 9 | 0.001 7 | 0.001 5 |
LMKAD | 0.930 1±0.023 7 | 0.933 8±0.021 4 | 0.932 5±0.022 3 | 0.900 0±0.031 5 | - | - |
LMK-OC-ELM-so | 0.934 8±0.020 8 | 0.935 5±0.019 3 | 0.936 8±0.019 4 | 0.906 2±0.030 2 | 0.142 0 | 0.006 3 |
LMK-OC-ELM-sig | 0.946 1±0.024 4 | 0.949 5±0.021 3 | 0.947 8±0.022 8 | 0.922 3±0.035 4 | 0.181 0 | 0.006 9 |
1 | 孙伟超, 李文海, 李文峰. 融合粗糙集与D-S证据理论的航空装备故障诊断[J]. 北京航空航天大学学报, 2015, 41 (10): 1902- 1909. |
SUN W C , LI W H , LI W F . Avionic devices fault diagnosis based on fusion method of rough set and D-S theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41 (10): 1902- 1909. | |
2 |
JAMIL T , MOHAMMED I . Simulation of VICTOR algorithm for fault diagnosis of digital circuits[J]. International Journal of Computer Theory and Engineering, 2015, 7 (2): 103- 107.
doi: 10.7763/IJCTE.2015.V7.939 |
3 | SMART E, BROWN D, AXEL-BERG L. Comparing one and two class classification methods for multiple fault detection on an induction motor[C]//Proc.of the IEEE Symposium on Industrial Electronics & Applications, 2013: 132-137. |
4 |
IQBAL R , MANIAK T , DOCTOR F , et al. Fault detection and isolation in industrial processes using deep learning approaches[J]. IEEE Trans.on Industrial Informatics, 2019, 15 (5): 3077- 3084.
doi: 10.1109/TII.2019.2902274 |
5 |
SCHOLKOPF B , PLATT J C , SHAWE-TAYLOR J , et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13 (7): 1443- 1471.
doi: 10.1162/089976601750264965 |
6 | 戴海发, 卞鸿巍, 马恒, 等. 基于一类SVM的综合导航系统信息故障检测方法[J]. 中国惯性技术学报, 2017, 25 (4): 555- 560. |
DAI H F , BIAN H W , MA H , et al. Information fault detection for integrated navigation systems using one-class support vector machine[J]. Journal of Chinese Inertial Technology, 2017, 25 (4): 555- 560. | |
7 |
TAX D M J , DUIN R P W . Support vector data description[J]. Machine Learning, 2004, 54 (1): 45- 66.
doi: 10.1023/B:MACH.0000008084.60811.49 |
8 |
NAVARRO-ACOSTA J A , RESéNDIZ-FLORES E O . Gompertz binary particle swarm optimization and support vector data description system for fault detection and feature selection applied in automotive pedals components[J]. International Journal of Advanced Manufacturing Technology, 2017, 92, 2311- 2314.
doi: 10.1007/s00170-017-0333-y |
9 |
MANSOURI M , NOUNOU M , NOUNOU H , et al. Kernel PCA-based GLRT for nonlinear fault detection of chemical processes[J]. Journal of Loss Prevention in the Process Industries, 2016, 40, 334- 347.
doi: 10.1016/j.jlp.2016.01.011 |
10 |
HUANG G B , ZHOU H , DING X , et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Trans.on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 42 (2): 513- 529.
doi: 10.1109/tsmcb.2011.2168604 |
11 | LENG Q, QI H, MIAO J, et al. One-class classification with extreme learning machine[EB/OL].[2019-11-04]. https://www.hindawi.com/journals/mpe/2015/412957. |
12 |
IOSIFIDIS A , MYGDALIS V , TEFAS A , et al. One-class classification based on extreme learning and geometric class information[J]. Neural Processing Letters, 2017, 45 (2): 577- 592.
doi: 10.1007/s11063-016-9541-y |
13 |
DAI H , CAO J , WANG T , et al. Multilayer one-class extreme learning machine[J]. Neural Networks: the Official Journal of the International Neural Network Society, 2019, 115, 11- 22.
doi: 10.1016/j.neunet.2019.03.004 |
14 |
GAUTAM C , TIWARI A , LENG Q . On the construction of extreme learning machine for online and offline one-class classification-an expanded toolbox[J]. Neurocomputing, 2017, 261, 126- 143.
doi: 10.1016/j.neucom.2016.04.070 |
15 | 邴其春, 龚勃文, 杨兆升, 等. 一种组合核相关向量机的短时交通流局域预测方法[J]. 哈尔滨工业大学学报, 2017, 49 (3): 150- 155. |
BING Q C , GONG B W , YANG Z S , et al. A short-term traffic flow local prediction method of combined kernel function relevance vector machines[J]. Journal of Harbin Institute of Technology, 2017, 49 (3): 150- 155. | |
16 | 李军, 李大超. 基于优化核极限学习机的风电功率时间序列预测[J]. 物理学报, 2016, 65 (13): 39- 48. |
LI J , LI D C . Wind power time series prediction using optimized kernel extreme learning machine method[J]. Acta Physica Sinica, 2016, 65 (13): 39- 48. | |
17 |
FENG J , JIAO L C , SUN T , et al. Multiple kernel learning based on discriminative kernel clustering for hyperspectral band selection[J]. IEEE Trans.on Geosciences and Remote Sensing, 2016, 54 (11): 6516- 6530.
doi: 10.1109/TGRS.2016.2585961 |
18 | GONEN M , ALPAYDIN E . Multiple kernel learning algorithms[J]. Journal of Machine Learning Research, 2011, 12, 2211- 2268. |
19 |
GONEN M , ALPAYDIN E . Localized algorithms for multiple kernel learning[J]. Pattern Recognition, 2013, 46 (3): 795- 807.
doi: 10.1016/j.patcog.2012.09.002 |
20 | TAX D M J, MULLER K R. A consistency-based model selection for one-class classification[C]//Proc.of the 17th International Conference on Pattern Recognition, 2004: 363-366. |
21 | TAX D M J. DDtools, the data description toolbox for Matlab[EB/OL].[2013-07-24]. http://prlab.tudelft.nl/david-tax/dd_tools.html. |
22 | BISHOP C M . Neural networks for pattern recognition[M]. Oxford: Oxford University Press, 1995. |
23 |
GAUTAM C , BALAJI R , SUDHARSAN K , et al. Localized multiple kernel learning for anomaly detection: one-class classification[J]. Knowledge-Based Systems, 2019, 165, 241- 252.
doi: 10.1016/j.knosys.2018.11.030 |
[1] | Zhangang YANG, Haiyi XU, Boyuan CHENG, Xudong SHI. Aviation generator eccentricity fault diagnosis based on FWA-DBN [J]. Systems Engineering and Electronics, 2022, 44(5): 1757-1764. |
[2] | Jie ZHANG, Lihua YANG, Qian NIE. Novel time-varying channel prediction method based on stacked ELM [J]. Systems Engineering and Electronics, 2022, 44(2): 662-667. |
[3] | Xing LIU, Wenshuang WANG, Jianyin ZHAO, Min ZHU. Research on an adaptive online incremental ELM fault diagnosis model [J]. Systems Engineering and Electronics, 2021, 43(9): 2678-2687. |
[4] | Chaowei SHI, Xiangru MENG, Qiaoyan KANG, Yuze SU. Virtual network topology reconfiguration approach based on hybrid traffic prediction [J]. Systems Engineering and Electronics, 2021, 43(5): 1382-1388. |
[5] | Xing LIU, Houqing XIONG, Jianyin ZHAO, Min ZHU. State prediction method of online non-stationary dynamic system based on improved sparse KELM [J]. Systems Engineering and Electronics, 2020, 42(9): 2022-2032. |
[6] | Chen LI, Jun'an YANG, Hui LIU. Modulation recognition algorithm based on information entropy and GA-ELM [J]. Systems Engineering and Electronics, 2020, 42(1): 223-229. |
[7] | FANG Hao, LI Aihua, PAN Yulong, WANG Xuejin, HE Chuan, WU Yuanjiang. Evaluation for infrared scene simulation based on self-learning framework [J]. Systems Engineering and Electronics, 2019, 41(2): 266-272. |
[8] | XIE Haoyu, QIU Jing, YANG Peng. Testability index allocation method considering unit mutual test [J]. Systems Engineering and Electronics, 2019, 41(12): 2899-2904. |
[9] | ZHANG Dongdong, SUN Rui, GAO Jun. Target tracking algorithm based on extreme learning machine and multiple kernel boosting learning [J]. Systems Engineering and Electronics, 2017, 39(9): 2149-2156. |
[10] | MA Long, DAI Chaofan, PEI Xin, HUANG Chao, ZHANG Hongyan, SU Zhigang. Fault detection method for redundant configuration of MEMS gyroscope [J]. Systems Engineering and Electronics, 2017, 39(10): 2298-2304. |
[11] | ZHANG Wei, XU Aiqiang, PING Dianfa. Nonlinear system online identification based on kernel sparse learning#br# algorithm with adaptive regulation factor [J]. Systems Engineering and Electronics, 2017, 39(1): 223-230. |
[12] | ZHAO Yu-xin, CHANG Shuai, WAN Cheng-cheng. Software reliability growth model considering fault detection effort and fault correction effort [J]. Systems Engineering and Electronics, 2015, 37(4): 969-973. |
[13] | DU Zhan-long, LI Xiao-min, XI Lei-ping, ZHANG Jin-zhong, LIU Xin-hai. Multi-class probabilistic extreme learning machine and its application in remaining useful life prediction [J]. Systems Engineering and Electronics, 2015, 37(12): 2777-2784. |
[14] | FENG Li-yuan, YAO Xu-liang, CAO Ran, ZOU Ai-li. Reliability and safety analysis of repairable control method based on distributed systems [J]. Systems Engineering and Electronics, 2015, 37(11): 2663-2668. |
[15] | WANG Jiawei, SHEN Yi, WANG Zhenhua. Fault detection for nonlinear switched systems using unknown input observers [J]. Systems Engineering and Electronics, 2015, 37(10): 2322-2328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||