Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (6): 2019-2026.doi: 10.12305/j.issn.1001-506X.2022.06.30
• Communications and Networks • Previous Articles Next Articles
Bowei QIN*, Lei JIANG, Hua XU, Zisen QI
Received:
2021-05-11
Online:
2022-05-30
Published:
2022-05-30
Contact:
Bowei QIN
CLC Number:
Bowei QIN, Lei JIANG, Hua XU, Zisen QI. Modulation recognition algorithm based on residual generation adversarial network[J]. Systems Engineering and Electronics, 2022, 44(6): 2019-2026.
Table 5
Influence of different labeled sample sizes on network performance"
网络 | 标签样本量 | ||||||||||
540 | 600 | 660 | 720 | 780 | 1 800 | 3 600 | 7 200 | 15 000 | 30 000 | 60 000 | |
CLDNN[ | 0.192 | 0.223 | 0.261 | 0.285 | 0.311 | 0.355 | 0.441 | 0.557 | 0.632 | 0.774 | 0.785 |
AUCNN[ | 0.221 | 0.248 | 0.355 | 0.374 | 0.391 | 0.425 | 0.504 | 0.663 | 0.724 | 0.827 | 0.832 |
Resnet-WSMF[ | 0.191 | 0.198 | 0.254 | 0.284 | 0.316 | 0.345 | 0.397 | 0.445 | 0.664 | 0.832 | 0.895 |
ACGAN[ | 0.233 | 0.243 | 0.265 | 0.287 | 0.328 | 0.391 | 0.462 | 0.683 | 0.764 | 0.825 | 0.863 |
Res-GAN | 0.849 | 0.897 | 0.980 | 0.979 | 0.978 | 0.979 | 0.975 | 0.980 | 0.979 | 0.977 | 0.978 |
1 |
WU H , LI Y X , ZHOU L , et al. Convolutional neural network and multi-feature fusion for automatic modulation classification[J]. Electronics Letters, 2019, 55 (16): 895- 897.
doi: 10.1049/el.2019.1789 |
2 |
TANG B , TU Y , ZHANG S Y , et al. Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks[J]. IEEE Access, 2018, 6, 15713- 15722.
doi: 10.1109/ACCESS.2018.2815741 |
3 |
童年, 李立春. 非重构压缩样值的MPSK信号最大似然调制识别[J]. 信息工程大学学报, 2015, 16 (5): 579- 583.
doi: 10.3969/j.issn.1671-0673.2015.05.012 |
TONG N , LI L C . Maximum likelihood modulation recognition of MPSK signals based on non-reconstructed compressed samples[J]. Journal of Information Engineering University, 2015, 16 (5): 579- 583.
doi: 10.3969/j.issn.1671-0673.2015.05.012 |
|
4 | 马碧云, 元达鹏, 刘娇蛟. 基于似然函数的双曲调频信号参数估计快速算法[J]. 电子与信息学报, 2020, 5, 1228- 1234. |
MA B Y , YUAN D P , LIU J J . A fast algorithm for parameter estimation of hyperbolic frequency modulation signals based on likelihood function[J]. Journal of Electronics and Information Technology, 2020, 5, 1228- 1234. | |
5 |
MI X J , TIAN Y , KANG B Y . A hybrid multi-criteria decision making approach for assessing health-care waste management technologies based on soft likelihood function and D-numbers[J]. Applied Intelligence, 2021, 51, 6708- 6727.
doi: 10.1007/s10489-020-02148-7 |
6 | 郭黎利, 刘湘蒲, 付江志, 等. 基于压缩循环谱的mW复合序列参数估计[J]. 华南理工大学学报(自然科学版), 2016, 44 (5): 29- 35. |
GUO L L , LIU X P , FU J Z , et al. Parameter estimation of MW composite sequence based on compression cycle spectrum[J]. Journal of South China University of Technology (Natural Science), 2016, 44 (5): 29- 35. | |
7 | 叶芝慧, 李昂, 彭文攀. 基于混合OFDM调制的认知网络快速组网技术[J]. 东南大学学报(自然科学版), 2017, 47 (4): 637- 641. |
YE Z H , LI A , PENG W P . A fast networking technology of cognitive network based on hybrid OFDM modulation[J]. Journal of Southeast University (Natural Science), 2017, 47 (4): 637- 641. | |
8 | WANG H, GUO L L. A new method of automatic modulation recognition based on dimension reduction[C]//Proc. of the IEEE Forum on Cooperative Positioning and Service, 2017: 316-320. |
9 | 张立民, 凌青, 闫文君. 基于高阶累积量的空时分组码盲识别算法研究[J]. 通信学报, 2016, 37 (5): 1- 8. |
ZHANG L M , LING Q , YAN W J . Research on blind recognition algorithm of space-time block codes based on high-order cumulants[J]. Journal of Communication, 2016, 37 (5): 1- 8. | |
10 | 谭晓衡, 褚国星, 张雪静, 等. 基于高阶累积量和小波变换的调制识别算法[J]. 系统工程与电子技术, 2018, 40 (1): 171- 177. |
TANG X H , CHU G X , ZHANG X J , et al. Modulation recogni tion algorithm based on high order cumulant and wavelet transform[J]. Systems Engineering and Electronics, 2018, 40 (1): 171- 177. | |
11 | ABU-ROMOH M , ABOUTALEB A , REZKI Z . Automatic modulation classification using moments and likelihood maximization[J]. IEEE Communications Letters, 2018, 22 (5): 938- 941. |
12 | O'SHEA T J, CORGAN J, CLANCY T C, et al. Convolutional radio modulation recognition networks[C]//Proc. of the International Conference on Engineering Applications of Neural Networks, 2016: 213-226. |
13 | WEST N E, O'SHEA T J. Deep architectures for modulation recognition[C]//Proc. of the IEEE International Symposium on Dynamic Spectrum Access Networks, 2017. |
14 | O'SHEA T J , ROY T , CLANCY T C . Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179. |
15 | WANG J , WANG W F , LUO F X , et al. Modulation classification based on denoising autoencoder and convolutional neural network with GNU radio[J]. The Journal of Engineering, 2019, 19, 6188- 6191. |
16 | FAN M , PENG C , WU L N , et al. Automatic modulation classification: a deep learning enabled approach[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (11): 10760- 10772. |
17 | QI P H , ZHOU X Y , ZHENG S S , et al. Automatic modulation classification based on deep residual networks with multimodal information[J]. IEEE Trans.on Cognitive Communications and Networking, 2021, 7 (1): 21- 33. |
18 | ODENA A. Semi-supervised learning with generative adversarial networks[C]//Proc. of the Data Efficient Machine Learning Workshop at International Conference on Machine Learning, 2016. |
19 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proc. of the 27th International Conference on Neural Information Processing Systems, 2014, 2: 2672-2680. |
20 | BU K , HE Y , JING X J , et al. Adversarial transfer learning for deep learning based automatic modulation classification[J]. IEEE Signal Processing Letters, 2020, 27, 880- 884. |
21 | HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on image net classification[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1026-1034. |
22 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
[1] | Juncheng GUO, Gang WAN, Xinjie HU, Fabao YAN, Shuai WANG. Meta-learning method for solar radio spectrum burst recognition [J]. Systems Engineering and Electronics, 2022, 44(8): 2410-2418. |
[2] | Rongxiang LIU, Lin WU, Zhige XIE, Honglin LIU. Auxiliary situation analysis for air defense system based on generative adversarial network [J]. Systems Engineering and Electronics, 2022, 44(8): 2522-2529. |
[3] | Pingliang XU, Yaqi CUI, Wei XIONG, Zhenyu XIONG, Xiangqi GU. Generative track segment consecutive association method [J]. Systems Engineering and Electronics, 2022, 44(5): 1543-1552. |
[4] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
[5] | Qi LIU, Xinyu ZHANG, Yongxiang LIU. Few-shot SAR target recognition based on gated multi-scale matching network [J]. Systems Engineering and Electronics, 2022, 44(11): 3346-3356. |
[6] | Pengyu CAO, Chengzhi YANG, Limeng SHI, Hongchao WU. LPI radar signal enhancement based on DAE-GAN network [J]. Systems Engineering and Electronics, 2021, 43(9): 2493-2500. |
[7] | Fan ZHAO, Hu JIN. Communication jamming waveform generation technology based on GAN [J]. Systems Engineering and Electronics, 2021, 43(4): 1080-1088. |
[8] | Yunhao SHI, Hua XU, Wanze ZHENG, Yinghui LIU. Few-shot modulation recognition method based on ensemble learning and feature dimension reduction [J]. Systems Engineering and Electronics, 2021, 43(4): 1099-1109. |
[9] | Zihao SONG, Wei CHENG, Cenxin PENG, Xiaobai LI. Modulation recognition method based on CWD and residual shrinkage network [J]. Systems Engineering and Electronics, 2021, 43(11): 3371-3379. |
[10] | Xiangxuan TIAN, Zhiqiang SHI. Simulation data generation algorithm based on evolutional generative adversarial networks for command information system [J]. Systems Engineering and Electronics, 2021, 43(1): 163-170. |
[11] | Kai LIU, Bin ZHANG, Qinghua HUANG. Modulation recognition algorithm based on TCNN-BiLSTM [J]. Systems Engineering and Electronics, 2020, 42(8): 1841-1849. |
[12] | Nan XIANG, Xiongtao ZHANG, Yajie DOU, Xiangqian XU, Kewei YANG, Yuejin TAN. High-end equipment development data hyposensitization method based on generative adversarial networks [J]. Systems Engineering and Electronics, 2020, 42(6): 1310-1316. |
[13] | Kai LIU, Mengwei ZHAO, Qinghua HUANG. Multi-h CPM modulation recognition algorithm based on approximate entropy [J]. Systems Engineering and Electronics, 2020, 42(3): 698-703. |
[14] | Chongyu PAN, Jian HUANG, Jianguo HAO, Jianxing GONG, Zhongjie ZHANG. Survey of weakly supervised learning integrating zero-shot and few-shot learning [J]. Systems Engineering and Electronics, 2020, 42(10): 2246-2256. |
[15] | Xiaojing YIN, Xiaofeng HU, Rongxiang LIU, Zhige XIE, Jun MA. Generative method of SOS capability maps based on GAN [J]. Systems Engineering and Electronics, 2020, 42(10): 2257-2264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||