Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (9): 2493-2500.doi: 10.12305/j.issn.1001-506X.2021.09.16
• Sensors and Signal Processing • Previous Articles Next Articles
Pengyu CAO1,*, Chengzhi YANG1, Limeng SHI2, Hongchao WU1
Received:
2021-01-08
Online:
2021-08-20
Published:
2021-08-26
Contact:
Pengyu CAO
CLC Number:
Pengyu CAO, Chengzhi YANG, Limeng SHI, Hongchao WU. LPI radar signal enhancement based on DAE-GAN network[J]. Systems Engineering and Electronics, 2021, 43(9): 2493-2500.
1 |
O'SHEA T J , ROY T , CLANCY T C . Over the air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179.
doi: 10.1109/JSTSP.2018.2797022 |
2 |
石礼盟, 杨承志, 吴宏超. 基于深层残差网络和三元组损失的雷达信号识别方法[J]. 系统工程与电子技术, 2020, 42 (11): 2506- 2512.
doi: 10.3969/j.issn.1001-506X.2020.11.12 |
SHI L M , YANG C Z , WU H C . Radar signal recognition method based on deep residual network and triplet loss[J]. Systems Engineering and Electronics, 2020, 42 (11): 2506- 2512.
doi: 10.3969/j.issn.1001-506X.2020.11.12 |
|
3 |
沈家煌, 黄建冲, 朱永成, 等. 雷达辐射源信号快速识别综述[J]. 电子信息对抗技术, 2017, 32 (5): 5- 10.
doi: 10.3969/j.issn.1674-2230.2017.05.002 |
SHEN J H , HUANG J C , ZHU Y C , et al. Overview of radar signal fast recognition[J]. Electronic Information Warfare Technology, 2017, 32 (5): 5- 10.
doi: 10.3969/j.issn.1674-2230.2017.05.002 |
|
4 | WANG Y H , ZHANG S C , ZHANG Y W , et al. A cooperative spectrum sensing method based on empirical mode decomposition and information geometry in complex electromagnetic environment[J]. Complexity, 2019, (7): 1- 13. |
5 |
ZHANG C H , HAN Y T , ZHANG P , et al. Research on modern radar emitter modelling technique under complex electromagnetic environment[J]. The Journal of Engineering, 2019, 2019 (20): 7134- 7138.
doi: 10.1049/joe.2019.0579 |
6 |
WANG Q S , BAI J , HUANG X Y , et al. Analysis of radar emitter signal sorting and recognition model structure[J]. Procedia Computer Science, 2019, 154, 500- 503.
doi: 10.1016/j.procs.2019.06.076 |
7 |
LI L , JI H B . Radar emitter recognition based on cyclostationary signatures and sequential iterative least-square estimation[J]. Expert Systems with Applications, 2011, 38 (3): 2140- 2147.
doi: 10.1016/j.eswa.2010.07.155 |
8 |
XU X , WANG W , WANG J H . A three-way incremental-learning algorithm for radar emitter identification[J]. Frontiers of Computer Science, 2016, 10 (4): 673- 688.
doi: 10.1007/s11704-015-4457-7 |
9 | PETROV N , JORDANOV I , ROE J . Radar emitter signals recognition and classification with feedforward networks[J]. Procedia Computer Science, 2013, 2 (2): 1192- 1200. |
10 |
LI Y B , GE J , LIN Y , et al. Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting[J]. Journal of Central South University, 2014, 21 (11): 4254- 4260.
doi: 10.1007/s11771-014-2422-5 |
11 |
YANG Z T , WU Z L , YIN Z D , et al. Hybrid radar emitter recognition based on rough K-means classifier and relevance vector machine[J]. Sensors, 2013, 13 (1): 848- 864.
doi: 10.3390/s130100848 |
12 | 张怡霄, 郭文普, 康凯, 等. 基于聚类和时序相关的重点雷达信号快速识别[J]. 系统工程与电子技术, 2020, 42 (3): 597- 602. |
ZHANG Y X , GUO W P , KANG K , et al. Key radar signal fast recognition method based on clustering and time-series correlation[J]. Systems Engineering and Electronics, 2020, 42 (3): 597- 602. | |
13 |
YANG Z T , QIU W , SUN H J , et al. Robust radar emitter recognition based on the three-dimensional distribution feature and transfer learning[J]. Sensors, 2016, 16 (3): 289- 302.
doi: 10.3390/s16030289 |
14 |
LIU Y J , XIAO P , WU H C , et al. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image[J]. Journal of Systems Engineering and Electronics, 2015, 26 (5): 973- 981.
doi: 10.1109/JSEE.2015.00106 |
15 |
MA Z Y , HUANG Z , LIN A , et al. LPI radar waveform recognition based on features from multiple images[J]. Sensors (Basel, Switzerland), 2020, 20 (2): 526.
doi: 10.3390/s20020526 |
16 |
ZHANG M , LIU L T , DIAO M , et al. LPI radar waveform recognition based on time-frequency distribution[J]. Sensors, 2016, 16 (10): 1682- 1706.
doi: 10.3390/s16101682 |
17 |
赵凯凯, 张柏林, 刘璘, 等. 基于频域奇异值分解的LPI雷达信号降噪[J]. 电讯技术, 2015, 55 (12): 1407- 1412.
doi: 10.3969/j.issn.1001-893x.2015.12.017 |
ZHAO K K , ZHANG B L , LIU L , et al. LPI radar signal denoising based on frequency domain SVD[J]. Telecommunication Engineering, 2015, 55 (12): 1407- 1412.
doi: 10.3969/j.issn.1001-893x.2015.12.017 |
|
18 | 胡丹. 低截获概率雷达辐射源信号降噪与检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
HU D. Research on denoising and detection technology of low probability radar radiation source signal[D]. Harbin: Harbin Institute of Technology, 2017. | |
19 | 耿常青, 杨承志, 吴宏超, 等. 基于卷积神经网络的微弱雷达信号增强技术研究[J]. 战术导弹技术, 2018, (6): 101- 105. |
GENG C Q , YANG C Z , WU H C , et al. Research on weak radar signal enhancement technology based on convolutional neural network[J]. Tactical Missile Technology, 2018, (6): 101- 105. | |
20 |
DU L , WANG B S , WANG P H , et al. Noise reduction method based on principal component analysis with beta process for micro-Doppler radar signatures[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8 (8): 4028- 4040.
doi: 10.1109/JSTARS.2015.2451004 |
21 |
NICOLSON A , PALIWAL K K . Masked multi-head self-attention for causal speech enhancement[J]. Speech Communication, 2020, 125, 80- 96.
doi: 10.1016/j.specom.2020.10.004 |
22 |
VISHAL P , PAJESH K S . Convolutional support vector machines for speech recognition[J]. International Journal of Speech Technology, 2019, 22 (3): 601- 609.
doi: 10.1007/s10772-018-09584-4 |
23 | HEATON J , IAN G , YOSHUA B , et al. Deep learning[J]. Genetic Programming & Evolvable Machines, 2018, 19 (3): 305- 307. |
24 | SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines[C]//Proc. of the 12th International Conference on Artificial Intelligence and Statistics, 2009: 448-445. |
25 | HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//Proc. of the International Conference on Computer Vision, 2015: 1026-1034. |
26 |
WANG S H , PHILLIPS P , SUI Y , et al. Classification of Alzheimer's disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling[J]. Journal of Medical Systems, 2018, 42 (5): 85.
doi: 10.1007/s10916-018-0932-7 |
27 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision & Pattern Recognition, 2016. |
28 |
殷敬伟, 罗五雄, 李理, 等. 基于降噪自编码器的水声信号增强研究[J]. 通信学报, 2019, 40 (10): 119- 126.
doi: 10.11959/j.issn.1000-436x.2019181 |
YIN J W , LUO W X , LI L , et al. Enhancement of underwater acoustic signal based on denoising automatic-encoder[J]. Journal on Communications, 2019, 40 (10): 119- 126.
doi: 10.11959/j.issn.1000-436x.2019181 |
|
29 | GOODFELLOW I, POUGET A J. Generative adversarial nets[C]//Proc. of the Conference on Advances in Neural Information Processing Systems, 2014: 2672-2680. |
30 |
YUAN X Y , HE P , ZHU Q L . Adversarial examples: attacks and defenses for deep learning[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (9): 2805- 2824.
doi: 10.1109/TNNLS.2018.2886017 |
31 | MEHTA K, KOBTI Z. Data augmentation using CA evolved GANs[C]//Proc. of the Symposium on Computers and Communications, 2019: 1087-1092. |
32 | ABRAMIAN D, EKLUND A. Refacing: reconstructing anonymized facial features using GANS[C]//Proc. of the 16th International Symposium on Biomedical Imaging, 2019: 1104-1108. |
33 | 郝云飞, 刘章孟, 郭福成, 等. 基于生成对抗网络的信号调制方式的开集识别[J]. 系统工程与电子技术, 2019, 41 (11): 2619- 2624. |
HAO Y F , LIU Z M , GUO F C , et al. Open-set recognition of signal modulation based on generative adversarial networks[J]. Systems Engineering and Electronics, 2019, 41 (11): 2619- 2624. | |
34 |
殷小静, 胡晓峰, 刘戎翔, 等. 基于GAN的体系能力图谱生成方法[J]. 系统工程与电子技术, 2020, 42 (10): 2257- 2264.
doi: 10.3969/j.issn.1001-506X.2020.10.14 |
YIN X J , HU X F , LIU R X , et al. Generative method of SOS capability maps based on GAN[J]. Systems Engineering and Electronics, 2020, 42 (10): 2257- 2264.
doi: 10.3969/j.issn.1001-506X.2020.10.14 |
[1] | Minglei TANG, Wenpeng ZHANG, Weidong JIANG, Xunzhang GAO. Micro-motion signal enhancement method based on multi-resolution saliency filtering [J]. Systems Engineering and Electronics, 2022, 44(4): 1148-1157. |
[2] | Guiguang XU, Xudong WANG, Fei WANG, Guobing HU, Yongxing GAO, Zehu LUO. LPI radar emitter signals recognition in low SNR based on SE-ResNeXt network [J]. Systems Engineering and Electronics, 2022, 44(12): 3676-3684. |
[3] | Fan ZHAO, Hu JIN. Communication jamming waveform generation technology based on GAN [J]. Systems Engineering and Electronics, 2021, 43(4): 1080-1088. |
[4] | Shuai ZHAO, Songtao LIU, Huiyang WANG. LPI radar waveform recognition algorithm based on PSO-CNN [J]. Systems Engineering and Electronics, 2021, 43(12): 3552-3563. |
[5] | Zhimei HAO, Jinping SUN, Meifang LUO. Waveform cluster design of low probability of intercept based on compound frequency coding [J]. Systems Engineering and Electronics, 2021, 43(11): 3137-3143. |
[6] | Nan XIANG, Xiongtao ZHANG, Yajie DOU, Xiangqian XU, Kewei YANG, Yuejin TAN. High-end equipment development data hyposensitization method based on generative adversarial networks [J]. Systems Engineering and Electronics, 2020, 42(6): 1310-1316. |
[7] | Xiaojing YIN, Xiaofeng HU, Rongxiang LIU, Zhige XIE, Jun MA. Generative method of SOS capability maps based on GAN [J]. Systems Engineering and Electronics, 2020, 42(10): 2257-2264. |
[8] | HUANG Yingkun, JIN Weidong, YU Zhibin, WU Yunpu. Radar emitter signal recognition based on deep learning and ensemble learning [J]. Systems Engineering and Electronics, 2018, 40(11): 2420-. |
[9] | REN Jun, HU Xiaofeng, ZHU Feng. Effectiveness prediction of weapon equipment systemofsystems based on deep learning feature transfer#br# [J]. Systems Engineering and Electronics, 2017, 39(12): 2745-2749. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||