Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (1): 163-170.doi: 10.3969/j.issn.1001-506X.2021.01.20
Previous Articles Next Articles
Xiangxuan TIAN(), Zhiqiang SHI*(
)
Received:
2020-02-27
Online:
2020-12-25
Published:
2020-12-30
Contact:
Zhiqiang SHI
E-mail:tian_xiangxuan@qq.com;13910246186@139.com
CLC Number:
Xiangxuan TIAN, Zhiqiang SHI. Simulation data generation algorithm based on evolutional generative adversarial networks for command information system[J]. Systems Engineering and Electronics, 2021, 43(1): 163-170.
Table 1
Original datasets"
ID | 22维训练数据 | |||||||||||
1_1 | 1_2 | 1_3 | 1_4 | 1_5 | 1_6 | 1_7 | 1_8 | 1_9 | 1_10 | … | 1_22 | |
1 | 21 | 12.9 | - | - | 42.9 | - | 60.7 | - | 80 | - | … | 13.2 |
2 | 13.4 | 8.6 | 2.42 | 0.6 | 5.53 | 187 | 52.8 | 1.1 | 44 | 4.31 | … | 35.3 |
3 | 19.6 | 9.3 | 3.02 | 0.5 | 0.4 | 293 | 54.7 | 1.61 | 48 | - | … | 58.1 |
4 | 15.4 | 18.6 | 1.7 | 0.44 | 1.3 | 140 | 57.5 | 0.8 | 117 | - | … | 24.5 |
5 | 15.5 | 4.9 | 2.47 | 1.03 | 1.65 | 135 | 59.6 | 1.64 | 73 | - | … | 51.4 |
6 | 13.1 | 13.7 | 2.95 | 0.49 | 20.6 | 258 | 49.9 | 0.73 | 38 | - | … | 36.3 |
7 | 15.5 | 7 | 2.72 | 0.53 | 0.51 | 326 | 62.7 | 0.7 | 73 | 3.1 | … | 71.5 |
8 | 42.5 | 10.3 | 4.17 | 0.53 | 0.91 | 174 | 63.6 | 1.68 | 146 | - | … | 16.3 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
Table 2
Correlation adjacency matrix of original datasets"
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | 22 |
1 | 1.00 | 0.21 | 0.33 | 0.34 | 0.25 | 0.33 | 0.34 | … | 0.18 |
2 | 0.21 | 1.00 | 0.15 | 0.21 | 0.24 | 0.20 | 0.15 | … | 0.48 |
3 | 0.33 | 0.15 | 1.00 | 0.64 | 0.25 | 0.57 | 0.60 | … | 0.18 |
4 | 0.34 | 0.21 | 0.64 | 1.00 | 0.21 | 0.60 | 0.65 | … | 0.22 |
5 | 0.25 | 0.24 | 0.25 | 0.21 | 1.00 | 0.21 | 0.19 | … | 0.26 |
6 | 0.33 | 0.20 | 0.57 | 0.60 | 0.21 | 1.00 | 0.64 | … | 0.23 |
7 | 0.34 | 0.15 | 0.60 | 0.65 | 0.19 | 0.64 | 1.00 | … | 0.15 |
8 | 0.24 | 0.22 | 0.18 | 0.26 | 0.31 | 0.22 | 0.24 | … | 0.28 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | |
22 | 0.18 | 0.48 | 0.18 | 0.22 | 0.26 | 0.23 | 0.15 | … | 1.00 |
1 | LI X, HUANG H. Reliability evaluation for the C4ISR communication system via propagation model[C]//Proc.of the Annual Reliability and Maintainability Symposium, 2019. |
2 | OUYANG S, DAI Z, YAN C. Operational effectiveness evaluation of maritime C4ISR system based on system dynamics[C]//Proc.of the 37th Chinese Control Conference, 2018: 8583-8588. |
3 | JIAO Z , YAO P . Capability construction of C4ISR based on AI planning[J]. IEEE Access, 2019, 1 (7): 31997- 32008. |
4 | XIAO B, LUO P, CHENG Z. Systematic combat effectiveness evaluation model based on xgboost[C]//Proc.of the 12th International Conference on Reliability Maintainability and Safety, 2018: 130-134. |
5 | HILL R, TOLK A. Open challenges in building combat simulation systems to support test, analysis and training[C]//Proc.of the Winter Simulation Conference, 2018: 3730-3741. |
6 | SHU Z , WANG W . Design of an optimized architecture for manned and unmanned combat system of systems: formulation and coevolutionary optimization[J]. IEEE Access, 2018, 1 (6): 52725- 52740. |
7 | HAI N, YUAN S. Research on integrated simulation training system for warship communication[C]//Proc.of the International Conference on Smart Grid and Electrical Automation, 2017: 533-537. |
8 | HARDER B, BLAIS C. Conceptual framework for an automated battle planning system in combat simulations[C]//Proc.of the Winter Simulation Conference, 2017: 4141-4152. |
9 | TOLT G, HEDSTROM J, BRUVOLL S. Multi-aspect path planning for enhanced ground combat simulation[C]//Proc.of the IEEE Symposium Series on Computational Intelligence, 2017. |
10 | XU X M , YANG R N . Situation assessment for air combat based on novel semi-supervised naive Bayes[J]. Journal of Systems Engineering and Electronics, 2018, 29 (4): 768- 779. |
11 | TOLK A. Tutorial on the engineering principles of combat modeling and distributed simulation[C]//Proc.of the Winter Simulation Conference, 2019: 18-32. |
12 | 段萌, 王功鹏, 牛常勇. 基于卷积神经网络的小样本图像识别方法[J]. 计算机工程与设计, 2018, 39 (1): 224- 229. |
DUAN M , WANG G P , NIU C Y . Method of small sample size image recognition based on convolution neural network[J]. Computer Engineering and Design, 2018, 39 (1): 224- 229. | |
13 | 任佳, 高晓光. 信息不完备小样本条件下离散DBN参数学习[J]. 系统工程与电子技术, 2012, 34 (8): 1723- 1728. |
REN J , GAO X G . Discrete dynamic BN parameter learning under small sample and incomplete information[J]. Systems Engineering and Electronics, 2012, 34 (8): 1723- 1728. | |
14 | 常沙, 赵旭赟. 面向战役模拟训练的气象水文环境想定生成研究[J]. 军事运筹与系统工程, 2019, 33 (2): 29- 34. |
CHANG S , ZHAO X Z . Research on meteorological and hydrological environment scenario generation for campaign simu-lation training[J]. Military Operations Research and Systems Engineering, 2019, 33 (2): 29- 34. | |
15 | LI H Z, CHEN F, YANG Z J. Bayesian reliability assessment method for single NC machine tool under zero failures[C]//Proc.of the International Conference on Applications and Techniques in Information Security, 2015: 662-666. |
16 | 杨懿男, 齐林海, 王红. 基于生成对抗网络的小样本数据生成技术研究[J]. 电力建设, 2019, 40 (5): 71- 77. |
YANG Y N , QI L H , WANG H . Research on generation technology of small sample data based on generative adversarial network[J]. Electric Power Construction, 2019, 40 (5): 71- 77. | |
17 | 胡晓峰, 贺筱媛, 饶德虎. 基于复杂网络的体系作战指挥与协同机理分析方法研究[J]. 指挥与控制学报, 2015, 1 (1): 5- 13. |
HU X F , HE X Y , RAO D H . Research on mechanism of command and coordination for system of systems operation based on complex network theory[J]. Journal of Command and Control, 2015, 1 (1): 5- 13. | |
18 | WAN H. Deep learning neural network optimizing method and libraries review[C]//Proc.of the International Conference on Robots & Intelligent System, 2019: 497-500. |
19 | BRUZZONE L. Multisource labeled data: an opportunity for training deep learning networks[C]//Proc.of the International Geoscience and Remote Sensing Symposium, 2019: 4799-4802. |
20 | YUAN X , HE P . Adversarial examples: attacks and defenses for deep learning[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (9): 2805- 2824. |
21 | GOODFELLOW I, POUGET A J. Generative adversarial nets[C]//Proc.of the Conference on Advances in Neural Information Processing Systems, 2014: 2672-2680. |
22 | GOODFELLOW I , BENGIO Y , COURVILLE A . Deep lear-ning[M]. Cambridge: MIT Press, 2016. |
23 | MEHTA K, KOBTI Z. Data augmentation using CA evolved GANs[C]//Proc.of the Symposium on Computers and Communications, 2019: 1087-1092. |
24 | ABRAMIAN D, EKLUND A. Refacing: reconstructing anonymized facial features using GANS[C]//Proc.of the 16th International Symposium on Biomedical Imaging, 2019: 1104-1108. |
25 | 曹雷. 指挥信息系统[M]. 2版 北京: 国防工业出版社, 2016. |
CAO L . C4ISR System[M]. 2nd ed Beijing: National Defense Industry Press, 2016. | |
26 | 曹雷, 张永亮. 以知识为中心的未来指挥信息系统概念、能力及关键技术研究[J]. 军事运筹与系统工程, 2015, 29 (3): 69- 74. |
CAO L , ZHANG Y L . Research on the concept, capability and key technology of future command information system based on knowledge[J]. Military Operations Research and Systems Engineering, 2015, 29 (3): 69- 74. | |
27 | 中国人民解放军装甲兵工程学院.一种指挥信息系统与作战仿真系统数据交互转换器[P].中国: |
CN201410493974.8, 2015.01.28. Armored Engineering Collenge of PLA. A data exchange converter between command information system and combat simulation system[P].China: CN201410493974.8, 2015.01.28. | |
28 | TRIPATHI A, RATHEE G. Taxonomy of missing data along with their handling Methods[C]//Proc.of the 5th International Conference on Image Information Processing, 2019: 463-468. |
29 | CHAKRABORTY G , CHAKRABORTY B . A novel normalization technique for unsupervised learning in ANN[J]. IEEE Trans.on Neural Networks, 2000, 11 (1): 253- 257. |
30 | PAN H , KONG L . A modified neighborhood mutual information and light gradient boosting machine-based long-term prediction approach for anode effect[J]. Measurement Science and Technology, 2019, 30 (11): 105- 120. |
31 | DANG X , SANG H L , BEKNAZARYAN A . On mutual information estimation for mixed-pair random variables[J]. Statistics & Probability Letters, 2018, 12 (24): 9- 16. |
32 | SARAKIT P, THEERAMUNKONG T. Improving emotion classification in imbalanced YouTube dataset using SMOTE algorithm[C]//Proc.of the 2nd International Conference on Advanced Informatics: Concepts, Theory and Applications, 2015. |
[1] | Rongxiang LIU, Lin WU, Zhige XIE, Honglin LIU. Auxiliary situation analysis for air defense system based on generative adversarial network [J]. Systems Engineering and Electronics, 2022, 44(8): 2522-2529. |
[2] | Bowei QIN, Lei JIANG, Hua XU, Zisen QI. Modulation recognition algorithm based on residual generation adversarial network [J]. Systems Engineering and Electronics, 2022, 44(6): 2019-2026. |
[3] | Pingliang XU, Yaqi CUI, Wei XIONG, Zhenyu XIONG, Xiangqi GU. Generative track segment consecutive association method [J]. Systems Engineering and Electronics, 2022, 44(5): 1543-1552. |
[4] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
[5] | Pengyu CAO, Chengzhi YANG, Limeng SHI, Hongchao WU. LPI radar signal enhancement based on DAE-GAN network [J]. Systems Engineering and Electronics, 2021, 43(9): 2493-2500. |
[6] | Fan ZHAO, Hu JIN. Communication jamming waveform generation technology based on GAN [J]. Systems Engineering and Electronics, 2021, 43(4): 1080-1088. |
[7] | Nan XIANG, Xiongtao ZHANG, Yajie DOU, Xiangqian XU, Kewei YANG, Yuejin TAN. High-end equipment development data hyposensitization method based on generative adversarial networks [J]. Systems Engineering and Electronics, 2020, 42(6): 1310-1316. |
[8] | Xiaojing YIN, Xiaofeng HU, Rongxiang LIU, Zhige XIE, Jun MA. Generative method of SOS capability maps based on GAN [J]. Systems Engineering and Electronics, 2020, 42(10): 2257-2264. |
[9] | Kefan ZHU, Jiegui WANG. Low-resolution radar target one-step recognition algorithm based on SCGAN+CNN with a limited training data [J]. Systems Engineering and Electronics, 2020, 42(1): 67-75. |
[10] | HAO Yunfei, LIU Zhangmeng, GUO Fucheng, ZHANG Min. Open-set recognition of signal modulation based on generative adversarial networks [J]. Systems Engineering and Electronics, 2019, 41(11): 2619-2624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||