Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (8): 1841-1849.doi: 10.3969/j.issn.1001-506X.2020.08.26
Previous Articles Next Articles
Kai LIU(), Bin ZHANG(
), Qinghua HUANG(
)
Received:
2019-12-17
Online:
2020-07-25
Published:
2020-07-27
Supported by:
CLC Number:
Kai LIU, Bin ZHANG, Qinghua HUANG. Modulation recognition algorithm based on TCNN-BiLSTM[J]. Systems Engineering and Electronics, 2020, 42(8): 1841-1849.
1 |
BASAR E , WEN M , MESLEH R , et al. Index modulation techniques for next-generation wireless networks[J]. IEEE Access, 2017, 5, 16693- 16746.
doi: 10.1109/ACCESS.2017.2737528 |
2 | 谭晓衡, 褚国星, 张雪静, 等. 基于高阶累积量和小波变换的调制识别算法[J]. 系统工程与电子技术, 2018, 40 (1): 171- 177. |
TAN X H , CHU G X , ZHANG X J , et al. Modulation recognition algorithm based on high-order cumulants and wavelet transform[J]. Systems Engineering and Electronics, 2018, 40 (1): 171- 177. | |
3 | DOBRE O A , ABDI A , BARNESS Y , et al. Survey of automatic modulation classification techniques: classical approaches and new trends[J]. Institution of Engineering and Technology, 2007, 1 (2): 137- 156. |
4 |
O'SHEA T J , ROY T , CLANCY T C . Over-the-air deep lear-ning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179.
doi: 10.1109/JSTSP.2018.2797022 |
5 |
TANG B , TU Y , ZHANG Z , et al. Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks[J]. IEEE Access, 2018, 6, 15713- 15722.
doi: 10.1109/ACCESS.2018.2815741 |
6 | XU J L , SU W , ZHOU M . Likelihood-ratio approaches to automatic modulation classification[J]. IEEE Trans.on Systems, 2011, 41 (4): 455- 469. |
7 |
XU J L , SU W , ZHOU M . Software-defined radio equipped with rapid modulation recognition[J]. IEEE Trans.on Vehicular Technology, 2010, 59 (4): 1659- 1667.
doi: 10.1109/TVT.2010.2041805 |
8 |
NANDI A K , AZZOUZ E E . Algorithms for automatic modulation recognition of communication signals[J]. IEEE Trans.on Communications, 1998, 46 (4): 431- 436.
doi: 10.1109/26.664294 |
9 | 陈泽艺. 基于循环谱和高阶累积量的联合模式识别方法[J]. 电讯技术, 2015, 1 (3): 100- 104. |
CHEN Z Y . A combined modulation recognition based on cyclic spectrum and high-order cumulants[J]. Telecommunication Engineering, 2015, 1 (3): 100- 104. | |
10 |
SOLIMAN S S , HSUE S . Signal classification using statistical moments[J]. IEEE Trans.on Communications, 1992, 40 (5): 908- 916.
doi: 10.1109/26.141456 |
11 |
WU H , SAQUIB M , YUN Z . Novel automatic modulation classification using cumulant features for communications via multipath channels[J]. IEEE Trans.on Wireless Communications, 2008, 7 (8): 3098- 3105.
doi: 10.1109/TWC.2008.070015 |
12 | 刘亚冲, 唐智灵. 基于softmax回归的通信信号循环谱的多分类识别方法[J]. 现代电子技术, 2018, 41 (3): 1- 5. |
LIU Y C , TANG Z L . Softmax regression based on multi-classification recognition method of communication signal cyclic spectrum[J]. Modern Electronics Technique, 2018, 41 (3): 1- 5. | |
13 |
O'SHEA T J , HOYDIS J . An introduction to deep learning for the physical layer[J]. IEEE Trans.on Cognitive Communications and Networking, 2017, 3 (4): 563- 575.
doi: 10.1109/TCCN.2017.2758370 |
14 | MAO Q , HU F , HAO Q . Deep learning for intelligent wireless networks: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20 (4): 2595- 2621. |
15 |
LEE J H , KIM J , KIM B , et al. Robust automatic modulation classification technique for fading channels via deep neural network[J]. Entropy, 2017, 19 (9): 454.
doi: 10.3390/e19090454 |
16 |
ZHANG M , DIAO M , GUO L M . Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5, 11074- 11082.
doi: 10.1109/ACCESS.2017.2716191 |
17 | ZENG Y , ZHANG M , HAN F , et al. Spectrum analysis and convolutional neural network for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2019, 8 (3): 929- 932. |
18 |
WANG D S , ZHANG M , LI J , et al. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning[J]. Optics Express, 2017, 25 (15): 17150.
doi: 10.1364/OE.25.017150 |
19 |
WANG D , ZHANG M , LI Z , et al. Modulation format recognition and OSNR estimation using CNN based deep learning[J]. IEEE Photonics Technology Letters, 2017, 29 (19): 1667- 1670.
doi: 10.1109/LPT.2017.2742553 |
20 | O'SHEA T J , CORGAN J , CLANCY T C . Convolutional radio modulation recognition networks[J]. Engineering Applications of Neural Networks, 2016, 629, 213- 226. |
21 |
YANG C , HE Z , PENG Y , et al. Deep learning aided method for automatic modulation recognition[J]. IEEE Access, 2019, 7, 109063- 109068.
doi: 10.1109/ACCESS.2019.2933448 |
22 |
ZHANG D , DING W , ZHANG B , et al. Automatic modulation classification based on deep learning for unmanned aerial vehicles[J]. Sensors, 2018, 18 (3): 924.
doi: 10.3390/s18030924 |
23 | WEST N E, O'SHEA T J. Deep architectures for modulation recognition[C]//Proc.of the IEEE International Symposium on Dynamic Spectrum Access Networks, 2017. |
24 |
MENG F , CHEN P , WU L , et al. Automatic modulation classification: a deep learning enabled approach[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (11): 10760- 10772.
doi: 10.1109/TVT.2018.2868698 |
25 | XU J L , SU W , ZHOU M . Likelihood-ratio approaches to automatic modulation classification[J]. IEEE Trans.on Systems, 2011, 41 (4): 455- 469. |
26 | HORNIK K . Approximation capabilities of multilayer feedforward networks[J]. Neural Networks, 1991, 4 (2): 251- 257. |
27 | TARA N S, ORIOL V, SENIOR A, et al. Convolutional, long short-term memory, fully connected deep neural networks[C]// Proc.of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2015. |
28 | GOODFELLOW I , BENGI O Y , COURVILLE A . Deep lear-ning[M]. Boston: Massachusetts Institute of Technology, 2016. |
29 |
LIAO K S , TAO G H , ZHONG Y , et al. Sequential convolutional recurrent neural networks for fast automatic modulation classification[J]. Signal Processing, 2019.
doi: 10.3847/1538-4357/ab1b2a |
30 |
HOCHREITER S , SCHMIDHUBER , JURGEN . Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735 |
31 | PASCANU R, GULCEHRE C, CHO K, et al. How to construct deep recurrent neural networks[C]//Proc.of the International Conference on Learning Representations, 2014. |
32 |
YANG Y , SOLIMAN S . A suboptimal algorithm for modulation classification[J]. IEEE Trans.on Aerospace and Electronic Systems, 1997, 33 (1): 38- 45.
doi: 10.1109/7.570706 |
33 |
YANG Y , LIU C H . An asymptotic optimal algorithm for modulation classification[J]. IEEE Communications Letters, 1998, 2 (5): 117- 119.
doi: 10.1109/4234.673652 |
[1] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[2] | Bowei QIN, Lei JIANG, Hua XU, Zisen QI. Modulation recognition algorithm based on residual generation adversarial network [J]. Systems Engineering and Electronics, 2022, 44(6): 2019-2026. |
[3] | Juan WEI, Huangwei YANG, Fangli NING. Acoustic scene classification based on joint optimization of NMF and CNN [J]. Systems Engineering and Electronics, 2022, 44(5): 1433-1438. |
[4] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[5] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[6] | Hengyan LIU, Limin ZHANG, Wenjun YAN, Zhaogen ZHONG, Qing LING, Xiaojun LIANG. LDPC decoding based on WBP-CNN algorithm [J]. Systems Engineering and Electronics, 2022, 44(3): 1030-1035. |
[7] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
[8] | Xi ZHANG, Zhengmeng JIN, Yaqin JIANG. Total variation algorithm with depth image priors for image colorization [J]. Systems Engineering and Electronics, 2022, 44(2): 385-393. |
[9] | Qinzhe LYU, Yinghui QUAN, Minghui SHA, Shuxian DONG, Mengdao XING. Ensemble deep learning-based intelligent classification of active jamming [J]. Systems Engineering and Electronics, 2022, 44(12): 3595-3602. |
[10] | Yiqiang TANG, Xiaopeng YANG, Shengming ZHU. Low-orbit satellite channel prediction algorithm based on the hybrid CNN-BiLSTM using attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(12): 3863-3870. |
[11] | Yongxing GAO, Xudong WANG, Ling WANG, Daiyin ZHU, Jun GUO, Fanwang MENG. Weather signal detection for dual polarization weather radar based on RCNN [J]. Systems Engineering and Electronics, 2022, 44(11): 3380-3387. |
[12] | Yonggang LI, Weigang ZHU, Qiongnan HUANG, Yuntao LI, Yonghua HE. Near-shore ship target detection with SAR images in complex background [J]. Systems Engineering and Electronics, 2022, 44(10): 3096-3103. |
[13] | Bo DAN, Zhequan FU, Shan GAO, Tao JIAN. Full-polarization high resolution range profile recognition technology for sea surface target based on convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(1): 108-116. |
[14] | Ziyan LIU, Shanshan MA, Jing LIANG, Mingcheng ZHU, Lei YUAN. Attention mechanism based CNN channel estimation algorithm in millimeter-wave massive MIMO system [J]. Systems Engineering and Electronics, 2022, 44(1): 307-312. |
[15] | Caiyun WANG, Yangyu LI, Xiaofei LI, Jianing WANG, Wenyi WEI. Aerial image super-resolution restruction based on sparsity and deep learning [J]. Systems Engineering and Electronics, 2021, 43(8): 2045-2050. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||