Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (3): 789-795.doi: 10.12305/j.issn.1001-506X.2021.03.24
• Guidance, Navigation and Control • Previous Articles Next Articles
Yongqiang XIAO1(), Hongli WANG1(
), Lei FENG1(
), Sihai YOU1(
), Yiyang HE1(
), Qiang XU2(
)
Received:
2020-04-29
Online:
2021-03-01
Published:
2021-03-16
CLC Number:
Yongqiang XIAO, Hongli WANG, Lei FENG, Sihai YOU, Yiyang HE, Qiang XU. Pulsar position error estimation algorithm with corrected clock error[J]. Systems Engineering and Electronics, 2021, 43(3): 789-795.
Table 3
TSKF estimation bias under different clock errors"
钟差(×10-6)/s | 未修正钟差的估计偏差/mas | TSKF估计偏差/mas |
1 | (2.940, 21.090) | (0.002, 0.013) |
2 | (4.760, 34.070) | (0.005, 0.034) |
3 | (6.580, 46.870) | (0.007, 0.062) |
4 | (8.410, 59.960) | (0.008, 0.063) |
5 | (10.230, 74.920) | (0.010, 0.092) |
6 | (12.050, 85.890) | (0.012, 0.101) |
7 | (13.870, 98.890) | (0.014, 0.124) |
8 | (15.690, 111.790) | (0.015, 0.125) |
9 | (17.510, 124.740) | (0.019, 0.150) |
10 | (19.330, 137.660) | (0.020, 0.160) |
1 | EMADZADEH A , SPEYER J L . Relative navigation between two spacecraft using X-ray pulsars[J]. IEEE Trans.on Control Systems Technology, 2010, 19 (5): 1021- 1035. |
2 |
SHEIKH S I , HANSON J E , GRAVEN P H , et al. Spacecraft navigation and timing using X-ray pulsars[J]. Navigation, 2011, 58 (2): 165- 186.
doi: 10.1002/j.2161-4296.2011.tb01799.x |
3 | XIAO M L , ZHANG Y B , FU H M , et al. Nonlinear unbiased minimum-variance filter for Mars entry autonomous navigation under large uncertainties and unknown measurement bias[J]. ISA Transactions, 2018, 76 (3): 97- 109. |
4 | ZHANG H , JIAO R , XU L P . Formation of a satellite navigation system using X-ray pulsars[J]. Publications of the Astronomical Society of the Pacific, 2019, 131 (8): 24- 35. |
5 | XU Q , WANG H L , FENG L , et al. A novel X-ray pulsar integrated navigation method for ballistic aircraft[J]. Optik, 2018, 175 (9): 28- 38. |
6 |
CHEN P T , SPEYER J L , BAYARD D S , et al. Autonomous navigation using X-ray pulsars and multirate processing[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (9): 2237- 2249.
doi: 10.2514/1.G002705 |
7 | XUE M F , SHI Y F , GUO Y F , et al. X-ray pulsar-based navigation considering spacecraft orbital motion and systematic biases[J]. Sensors, 2019, 19 (8): 18- 77. |
8 |
WANG Y D , ZHENG W , AN X Y , et al. XNAV/CNS integrated navigation based on improved kinematic and static filter[J]. The Journal of Navigation, 2013, 66 (6): 899- 918.
doi: 10.1017/S0373463313000301 |
9 |
CUI P Y , WANG S , GAO A , et al. X-ray pulsars/Doppler integrated navigation for Mars final approach[J]. Advances in Space Research, 2016, 57 (9): 1889- 1900.
doi: 10.1016/j.asr.2016.02.001 |
10 | YANG H F , WANG Z H , FU H M , et al. Integrated navigation for Mars final approach based on Doppler radar and X-ray pulsars with atomic clock error[J]. Acta Astronautica, 2019, 159 (7): 308- 318. |
11 | LI X Y , JIN J , SHEN Y . Modified unscented Kalman filter for X-ray pulsar-based navigation system in the presence of measurement outliers[J]. Proceedings of the Institution of Mechanical Journal of Aerospace Engineering, 2016, 232 (2): 260- 269. |
12 | GUO P B , SUN J , HU S L , et al. Multirate observation-based X-ray pulsar navigation technique[J]. Journal of Aerospace Engineering, 2017, 30 (2): 13- 22. |
13 |
ZHANG H , JIAO R , XU L P . Orbit determination using pulsar timing data and orientation vector[J]. The Journal of Navigation, 2019, 72 (1): 155- 175.
doi: 10.1017/S0373463318000632 |
14 |
LIU J , MA J , TIAN J W , et al. X-ray pulsar navigation method for spacecraft with pulsar direction error[J]. Advances in Space Research, 2010, 46 (11): 1409- 1417.
doi: 10.1016/j.asr.2010.08.019 |
15 | WANG Y D , ZHENG W , SUN S M , et al. X-ray pulsar-based navigation using time-differenced measurement[J]. Aerospace Science and Technology, 2014, 36 (10): 27- 35. |
16 |
WANG Y D , ZHENG W , SUN S M , et al. Robust information filter based on maximum correntropy criterion[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (5): 1126- 1131.
doi: 10.2514/1.G001576 |
17 | 刘劲. 基于X射线脉冲星的航天器自主导航方法研究[D]. 武汉: 华中科技大学, 2011. |
LIU J. Research on autonomous navigation method of spacecraft based on X-ray pulsar[D]. Wuhan: Huazhong University of Science and Technology, 2011. | |
18 | 孙守明, 郑伟, 汤国建. X射线脉冲星星表方位误差估计算法研究[J]. 飞行器测控学报, 2010, 29 (2): 57- 60. |
SUN S M , ZHENG W , TANG G J . Research on estimation of position error of X-ray pulsar[J]. Journal of Aircraft Measurement and Control, 2010, 29 (2): 57- 60. | |
19 |
XU Q , WANG H L , FENG L , et al. An improved augmented X-ray pulsar navigation algorithm based on the norm of pulsar direction error[J]. Advances in Space Research, 2018, 62 (11): 3187- 3198.
doi: 10.1016/j.asr.2018.08.026 |
20 | REN X B , NIE G G , LI L Y . An Improved augmented algorithm for direction error in XPNAV[J]. Symmetry, 2020, 12 (7): 165- 178. |
21 |
XIONG K , WEI C L , LIU L D . Robust Kalman filtering for discrete-time nonlinear systems with parameter uncertainties[J]. Ae-rospace Science and Technology, 2012, 18 (1): 15- 24.
doi: 10.1016/j.ast.2011.03.012 |
22 | NING X L , GUI M Z , FANG J C , et al. Differential X-ray pulsar aided celestial navigation for Mars exploration[J]. Aerospace Science and Technology, 2017, 62 (7): 36- 45. |
23 |
NING X L , GUI M Z , ZHANG J , et al. Impact of the Pulsar's direction on CNS/XNAV integrated navigation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2017, 53 (6): 3043- 3055.
doi: 10.1109/TAES.2017.2725518 |
24 |
GU L , JIANG X Q , LI S , et al. Optical/radio/pulsars integrated navigation for Mars orbiter[J]. Advances in Space Research, 2019, 63 (1): 512- 525.
doi: 10.1016/j.asr.2018.09.005 |
25 | 王宏力, 许强, 由四海, 等. 考虑卫星位置误差的增广脉冲星方位误差估计算法[J]. 国防科技大学学报, 2018, 40 (5): 177- 182. |
WANG H L , XU Q , YOU S H , et al. Augmentation pulsar position error estimation algorithm considering satellite position error[J]. Journal of National University of Defense Technology, 2018, 40 (5): 177- 182. | |
26 | 孙守明, 郑伟, 汤国建. X射线脉冲星/SINS组合导航中的钟差修正方法研究[J]. 国防科技大学学报, 2010, 32 (6): 82- 86. |
SUN S M , ZHENG W , TANG G J . Research on clock error correction method in X-ray pulsar/SINS integrated navigation[J]. Journal of National University of Defense Technology, 2010, 32 (6): 82- 86. | |
27 |
LIU J , MA J , TIAN J W , et al. Pulsar navigation for interplanetary missions using CV model and ASUKF[J]. Aerospace Science and Technology, 2012, 22 (1): 19- 23.
doi: 10.1016/j.ast.2011.04.010 |
28 | 王璐, 史晨曦, 李建勋, 等. 考虑钟差修正的脉冲星与多普勒差分组合导航[J]. 电波科学学报, 2018, 33 (2): 217- 224. |
WANG L , SHI C X , LI J X , et al. Pulsar and Doppler difference integrated navigation considering clock error correction[J]. Journal of Radio Science, 2018, 33 (2): 217- 224. | |
29 |
HAESSIG D , FRIEDLAND B . Separate-bias estimation with reduced-order Kalman filters[J]. IEEE Trans.on Automatic Control, 1998, 43 (7): 983- 987.
doi: 10.1109/9.701106 |
30 |
李孝辉, 吴海涛, 高海军, 等. 用Kalman滤波器对原子钟进行控制[J]. 控制理论与应用, 2003, 28 (4): 551- 554.
doi: 10.3969/j.issn.1000-8152.2003.04.014 |
LI X H , WU H T , GAO H J , et al. Controlling atomic clock with Kalman filter[J]. Control Theory & Applications, 2003, 28 (4): 551- 554.
doi: 10.3969/j.issn.1000-8152.2003.04.014 |
|
31 |
FRIEDLAND B . Treatment of bias in recursive filtering[J]. IEEE Trans.on Automatic Control, 1969, 14 (4): 359- 367.
doi: 10.1109/TAC.1969.1099223 |
32 |
IGNAGNI M B . Separate bias Kalman estimator with bias state noise[J]. IEEE Trans.on Automatic Control, 1990, 35 (3): 338- 341.
doi: 10.1109/9.50352 |
33 | 王奕迪, 郑伟, 孙守明, 等. 考虑系统偏差的脉冲星守时算法研究[J]. 国防科技大学学报, 2013, 35 (2): 12- 16. |
WANG Y D , ZHENG W , SUN S M , et al. Research on pulsar timekeeping algorithm considering system deviation[J]. Journal of National University of Defense Technology, 2013, 35 (2): 12- 16. | |
34 | 许强, 范小虎, 徐利国, 等. 脉冲星方位误差估计的TSKF算法[J]. 北京航空航天大学学报, 2020, 46 (4): 761- 768. |
XU Q , FAN X H , XU L G , et al. TSKF algorithm for estimating pulsar position error[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (4): 761- 768. |
[1] | Geng XU, Yongxu HE, Yonggang ZHANG. Inertial-frame-based transfer alignment using Rodriguez parameters [J]. Systems Engineering and Electronics, 2022, 44(9): 2903-2913. |
[2] | Haoran SHI, Faxing LU, Jiangxin QI, Guang YANG. Cooperative target tracking of UAVs based on aided beacon [J]. Systems Engineering and Electronics, 2022, 44(7): 2302-2310. |
[3] | Guang ZHAI, Yanxin WANG, Yiyong SUN. Cooperative tracking filtering technology of multi-target based on low orbit satellite constellation [J]. Systems Engineering and Electronics, 2022, 44(6): 1957-1967. |
[4] | Yiping DONG, Ning LIU, Zhong SU, Jingxiao WANG, Hongyang BAI. Integrated navigation method of high-speed spinning flying bodybased on AEKF [J]. Systems Engineering and Electronics, 2022, 44(6): 1977-1983. |
[5] | Wenhua LI, Lixin WANG, Qiang SHEN, Can LI, Zongshou WU. MEMS-INS/GNSS/VO integrated navigation method based on robust EKF [J]. Systems Engineering and Electronics, 2022, 44(6): 1994-2000. |
[6] | Qi WANG, Zhizhong LIAO, Fei YAN. Algorithm for countering velocity gate pull-off jamming of radar seeker based on probability data association [J]. Systems Engineering and Electronics, 2022, 44(2): 448-454. |
[7] | Yi LIU, Xiaoxiong ZHOU, Guangjun CHENG. High dynamic carrier tracking technology in frequency hopping systems [J]. Systems Engineering and Electronics, 2022, 44(2): 677-683. |
[8] | Zhaoqiang SUN, Zhigui WANG, Fei MENG, Luyu LI, Zhong YU, Yan CHEN. Ballistic target tracking filter design based on EKF and ballistic equations [J]. Systems Engineering and Electronics, 2022, 44(10): 3207-3212. |
[9] | Pingan ZHANG, Wei WANG, Min GAO, Yi WANG. Research on SR-CH∞KF for projectile attitude measurement [J]. Systems Engineering and Electronics, 2022, 44(1): 262-269. |
[10] | Heliang YUAN, Tian JIN, Jiaqing QU, Hongli LYU. Processing technology of discontinuous satellite navigation signal under rotating condition [J]. Systems Engineering and Electronics, 2021, 43(9): 2573-2580. |
[11] | Shuguang SUN, Qixin WEN. Aircraft height optimization algorithm of integrated navigation in terminal area based on height anomaly compensation [J]. Systems Engineering and Electronics, 2021, 43(9): 2612-2619. |
[12] | Yuexin ZHAO, Wangdong QI, Peng LIU, En YUAN, Bing XU. Quadratic constraint Kalman filter algorithm for three dimensional AoA target tracking [J]. Systems Engineering and Electronics, 2021, 43(8): 2263-2272. |
[13] | Chunhui LI, Jian MA, Yongjian YANG, Bingsong XIAO, Youwei DENG, Tao SHENG. Adaptive square-root cubature Kalman filter algorithm based on amending [J]. Systems Engineering and Electronics, 2021, 43(7): 1824-1830. |
[14] | Shuang CONG, Kun ZHANG. Online quantum state estimation optimization algorithm based on Kalman filter [J]. Systems Engineering and Electronics, 2021, 43(6): 1636-1643. |
[15] | Baojie CAI, Lei SHAO. Robust filtering algorithm based on three discriminant domain and least squares fitting [J]. Systems Engineering and Electronics, 2021, 43(5): 1346-1353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||