Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (10): 2275-2284.doi: 10.3969/j.issn.1001-506X.2020.10.16
Previous Articles Next Articles
Dali DING(), Zhenglei WEI(
), Shangqin TANG(
), Changqiang HUANG(
)
Received:
2020-01-13
Online:
2020-10-01
Published:
2020-09-19
CLC Number:
Dali DING, Zhenglei WEI, Shangqin TANG, Changqiang HUANG. Robust maneuvering decision-making method for air combat using adaptive prediction weight[J]. Systems Engineering and Electronics, 2020, 42(10): 2275-2284.
1 | 周思羽, 吴文海, 张楠, 等. 自主空战机动决策方法综述[J]. 航空计算技术, 2012, 42 (1): 27- 31. |
ZHOU S Y , WU W H , ZHANG N , et al. Overview of autonomous air combat maneuver decision[J]. Aeronautical Computing Technique, 2012, 42 (1): 27- 31. | |
2 |
KRZYSZTOF P , KRZYSZTOF W , TOMASZ K , et al. A web-oriented expert system for planning hurdles race training programmes[J]. Neural Computing and Applications, 2019, 31 (11): 7227- 7243.
doi: 10.1007/s00521-018-3559-1 |
3 | ROGER W S, ALAN E B. Neural network models of air combat maneuvering[D]. New Mexico: New Mexico State University, 1992. |
4 | 张涛, 于雷, 周忠良, 等. 基于人工势场启发粒子群算法的空战机动决策[J]. 电光与控制, 2013, 20 (1): 77- 82. |
ZHANG T , YU L , ZHOU Z L , et al. Decision-making of air combat maneuvering based on APF and PSO[J]. Electronics Optics & Control, 2013, 20 (1): 77- 82. | |
5 | 张涛, 于雷, 周忠良, 等. 基于变权重伪并行遗传算法的空战机动决策[J]. 飞行力学, 2012, 30 (5): 470- 473. |
ZHANG T , YU L , ZHOU Z L , et al. Decision-making for air combat maneuvering based on variable weight pseudo-parallel genetic algorithm[J]. Flight Dynamics, 2012, 30 (5): 470- 473. | |
6 | 顾佼佼, 赵建军, 刘卫华. 基于博弈论及Memetic算法求解的空战机动决策框架[J]. 电光与控制, 2015, 22 (1): 20- 23. |
GU J J , ZHAO J J , LIU W H . Air combat maneuvering decision framework based on game theory and memetic algorithm[J]. Electronics Optics & Control, 2015, 22 (1): 20- 23. | |
7 |
AUSTIN F , CARBONE G , MICHAEL F , et al. Game theory for automated maneuvering during air-to-air combat[J]. Journal of Guidance, 1990, 13 (6): 1143- 1147.
doi: 10.2514/3.20590 |
8 | ARDEMA M D.Air-to-air combat analysis: review of differential-gaming approaches[C]//Proc.of the Joint Automatic Control Conference, 1981. |
9 | 于睿箭, 冯允成. 影响图的基础理论和发展[J]. 北京航空航天大学学报, 1994, 20 (4): 429- 435. |
YU R J , FENG Y C . The theoretical foundations and development of influence diagram[J]. Journal of Beijing University of Aeronautics and Astronautics, 1994, 20 (4): 429- 435. | |
10 |
MYLVAGANAM T , SASSANO M , ASTOLFI A . A differential game approach to multi-agent collision avoidance[J]. IEEE Trans.on Automatic Control, 2017, 62 (8): 4229- 4235.
doi: 10.1109/TAC.2017.2680602 |
11 | SRIKANTHA P , KUNDUR D . A DER attack-mitigation differential game for smart grid security analysis[J]. IEEE Trans.on Smart Grid, 2017, 7 (3): 1476- 1485. |
12 |
LI M , SHUAI L . A differential game-theoretic approach for the intrusion prevention systems and attackers in wireless networks[J]. Wireless Personal Communications, 2018, 103 (3): 1993- 2003.
doi: 10.1007/s11277-018-5892-1 |
13 | XU G Y, WEI S N, ZHANG H M. Application of situation function in air combat differential games[C]//Proc.of the 36th Chinese Control Conference, 2017. |
14 | PING D, LIU H Y. Study on air combat tactics decision-making based on Bayesian networks[C]//Proc.of the International Conference on Information Management & Engineering, 2010. |
15 |
ZHANG X B , LIU G Q , YANG C J , et al. Research on air confrontation maneuver decision-making method based on reinforcement learning[J]. Electronics, 2018, 7 (11): 279.
doi: 10.3390/electronics7110279 |
16 | LIU P, MA Y F. A deep reinforcement learning based intelligent decision method for UCAV air combat[C]//Proc.of the Asian Simulation Conference, 2017, 751: 274-286. |
17 | ZHANG Y S, ZU W, GAO Y, et al. Research on autonomous maneuvering decision of UCAV based on deep reinforcement learning[C]//Proc.of the 30th Chinese Control and Decision Conference, 2018: 231-236. |
18 | HE X M, ZU W, CHANG H X, et al. Autonomous maneuvering decision research of UAV based on experience knowledge representation[C]//Proc.of the Control and Decision Conference, 2016. |
19 | 牛绿伟, 高晓光, 张坤, 等. 划分超视距、近距的多机协同作战战术决策[J]. 西北工业大学学报, 2011, 29 (6): 971- 977. |
NIU L W , GAO X G , ZHANG K , et al. Making decisions on proper cooperation tactics for multiple fighters to combat from beyond visual range (BVR) to within visual range (WVR)[J]. Journal of Northwestern Polytechnical Univeristy, 2011, 29 (6): 971- 977. | |
20 | 顾佼佼, 刘卫华, 姜文志. 基于攻击区和杀伤概率的视距内空战态势评估[J]. 系统工程与电子技术, 2015, 37 (6): 1306- 1312. |
GU J J , LIU W H , JIANG W Z . WVR air combat situation assessment model based on weapon engagement zone and kill probability[J]. Systems Engineering and Electronics, 2015, 37 (6): 1306- 1312. | |
21 | 谢邦荣, 杨剑影, 尹健, 等. 导弹单发杀伤概率影响因素分析[J]. 火力指挥与控制, 2004, 29 (4): 60- 64. |
XIE B R , YANG J Y , YIN J , et al. Analysis of the influencing factors upon kill probability for single missile[J]. Fire Control & Command Control, 2004, 29 (4): 60- 64. | |
22 | 吴文海, 周思羽, 高丽, 等. 基于导弹攻击区的超视距空战态势评估改进[J]. 系统工程与电子技术, 2011, 33 (12): 2679- 2685. |
WU W H , ZHOU S Y , GAO L , et al. Improvements of situation assessment for beyond-visual-range air combat based on missile launching envelope analysis[J]. Systems Engineering and Electronics, 2011, 33 (12): 2679- 2685. | |
23 | SUN T Y, TSAI S J, LEE Y N, et al. The study on intelligent advanced fighter air combat decision support system[C]//Proc.of the International Conference on Information Reuse and Integration, 2006: 39-44. |
24 |
CHENG M Y , DODDY P . Symbiotic organisms search: a new metaheuristic optimization algorithm[J]. Computers and Structures, 2014, 139, 98- 112.
doi: 10.1016/j.compstruc.2014.03.007 |
25 | 周虎, 赵辉, 李牧东, 等. 多策略自适应共生生物搜索算法[J]. 空军工程大学学报(自然科学版), 2016, 17 (4): 101- 106. |
ZHOU H , ZHAO H , LI M D , et al. Multi-strategy adaptive symbiotic organism search algorithm[J]. Journal of Air Force Engineering University (Natural Science Edition), 2016, 17 (4): 101- 106. | |
26 | 周虎, 赵辉, 周欢, 等. 自适应精英反向学习共生生物搜索算法[J]. 计算机工程与应用, 2016, 52 (19): 161- 166. |
ZHOU H , ZHAO H , ZHOU H , et al. Symbiotic organisms search algorithm using adaptive elite opposition-based learning[J]. Computer Engineering and Applications, 2016, 52 (19): 161- 166. | |
27 | 韩瑾, 王骁飞, 周虎, 等. 基于改进SOS算法的UCAV鲁棒机动决策研究[J]. 计算机工程与应用, 2018, 54 (2): 168- 172. |
HAN J , WANG X F , ZHOU H , et al. Robust optimization based on modified SOS for UCAV maneuvering decision[J]. Computer Engineering and Applications, 2018, 54 (2): 168- 172. | |
28 | 车竞, 钱炜祺, 和争春. 基于矩阵博弈的两机攻防对抗空战仿真[J]. 飞行力学, 2015, 33 (2): 173- 177. |
CHE J , QIAN W Q , HE Z C . Attack-defense confrontation simulation of air combat bansed on game-matrix approach[J]. Flight Dynamics, 2015, 33 (2): 173- 177. | |
29 |
HUANG C Q , DONG K S , HUANG H Q , et al. Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization[J]. Journal of Systems Engineering and Electronics, 2018, 29 (1): 86- 97.
doi: 10.21629/JSEE.2018.01.09 |
[1] | Jianfeng YANG, Heye XIAO, Liang LI, Junqiang BAI, Weihao DONG. Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism [J]. Systems Engineering and Electronics, 2022, 44(8): 2530-2539. |
[2] | Mulai TAN, Dali DING, Lei XIE, Wei DING, Chenghui LYU. UCAV escape maneuvering decision based on fuzzy expert system and IDE algorithm [J]. Systems Engineering and Electronics, 2022, 44(6): 1984-1993. |
[3] | Xiaowei FU, Jing PAN. Distributed formation control of UAV swarm with dynamic obstacle avoidance [J]. Systems Engineering and Electronics, 2022, 44(2): 529-537. |
[4] | Han LI, Honghai ZHANG, Liandong ZHANG, Hao LIU. Multiple logistics unmanned aerial vehicle collaborative task allocation in urban areas [J]. Systems Engineering and Electronics, 2021, 43(12): 3594-3602. |
[5] | Xiaowei FU, Zihao CHEN. Design of control method for multi-UAV cooperative detection of fast target [J]. Systems Engineering and Electronics, 2021, 43(11): 3295-3304. |
[6] | Xiaowei FU, Zihao CHEN. Cooperative capture control method for multi-UAV based on consensus protocol [J]. Systems Engineering and Electronics, 2021, 43(9): 2501-2507. |
[7] | Weishi CHEN, Yifeng HUANG, Xiaolong CHEN, Xianfeng LU, Jie ZHANG. Low-altitude target classification based on model conversion frequency estimation [J]. Systems Engineering and Electronics, 2021, 43(4): 927-936. |
[8] | Xiaohai WANG, Xiuyun MENG, Chuanxu LI. Design of trajectory tracking controller for UAV based on MPC [J]. Systems Engineering and Electronics, 2021, 43(1): 191-198. |
[9] | An XU, Chunqing GAO, Yingxin KOU, Zhanwu LI, You LI. Autonomous air combat decision of 1vs1 based on BFM method [J]. Systems Engineering and Electronics, 2020, 42(11): 2513-2519. |
[10] | Wenhai WU, Xiaofeng GUO, Siyu ZHOU. Path planning algorithm based on NURBS and GOBL-ACDE [J]. Systems Engineering and Electronics, 2020, 42(5): 1073-1082. |
[11] | Jie HUANG, Wei SUN, Yu GAO. Cooperative searching for the multi-UAVs based on dual-attribute probability model optimization [J]. Systems Engineering and Electronics, 2020, 42(1): 118-127. |
[12] | Sheng GAO, Jianliang AI, Zhihao WANG. Mixed population RRT algorithm for UAV path planning [J]. Systems Engineering and Electronics, 2020, 42(1): 101-107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||