Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (10): 2285-2293.doi: 10.3969/j.issn.1001-506X.2020.10.17
Previous Articles Next Articles
Guanglei MENG1(), Mingzhe ZHOU1(
), Haiyin PIAO2(
), Huimin ZHANG1(
)
Received:
2020-02-12
Online:
2020-10-01
Published:
2020-09-19
CLC Number:
Guanglei MENG, Mingzhe ZHOU, Haiyin PIAO, Huimin ZHANG. Threat assessment method of dual-aircraft formation based on cooperative tactical recognition[J]. Systems Engineering and Electronics, 2020, 42(10): 2285-2293.
Table 1
Space occupancy and maneuver characteristic of leader and wingman in cooperative tactics of dual-aircraft formation"
变量 | 协同战术 | 长机空间占位 | 长机机动特性 | 僚机空间占位 | 僚机机动特性 |
DA | 尾后攻击战术 | 红方后方 蓝方僚机前方 | 水平直线飞行 | 红方后方 蓝方长机后方 | 水平直线飞行 |
PA | 钳形攻击战术 | 红方前方 蓝方僚机左/右方 | 左/右盘旋 | 红方前方 蓝方长机左/右方 | 左/右盘旋 |
LA | 侧方攻击战术 | 红方左/右方 蓝方僚机前方 | 水平直线飞行 | 红方左/右方 蓝方长机后方 | 水平直线飞行 |
EA | 对头攻击战术 | 红方前方 蓝方僚机后方 | 水平直线飞行 | 红方前方 蓝方长机前方 | 先水平直线飞行 后左/右盘旋 |
HDO | 水平疏开战术 | 红方左/右方 蓝方僚机左/右方 | 左/右盘旋 | 红方左/右方 蓝方长机左/右方 | 左/右盘旋 |
VDO | 垂直疏开战术 | 红方前/后方 蓝方僚机上方 | 跃升机动 | 红方前方 蓝方长机下方 | 俯冲机动 |
CDO | 组合疏开战术 | 红方左/右方 蓝方僚机上方 | 先跃升机动后左/右盘旋 | 红方左/右方 蓝方长机下方 | 先俯冲机动 后左/右盘旋 |
Table 2
Definition of node and state set"
变量 | 变量含义 | 状态集 |
TAZ1 TAZ2 | 蓝方 方位角 | 前方F(-45°~45°)、右方R(45°~135°)、左方L(-135°~-45°)后方B(-135°~-180 & 135°~180°) |
ALT1 ALT2 | 蓝方 相对高度 | 高于红方H(ALT>500 m)E(-500 m<ALT<500 m)低于红方L(ALT<-500 m) |
TMI1 TMI2 | 蓝方 机动特性 | 水平直线飞行、俯冲、跃升、左盘旋、右盘旋、半滚倒转、斤斗、左上战斗转弯、右上战斗转弯、蛇形机动 |
SCT | 方位分类 协同战术 | 前方类协同战术FC(EA/PA/VDO)侧方类协同战术LC(LA/HDO/CDO)尾后类协同战术BC(DA/VDO)其他方位类战术OC(VDO/CDO) |
ICT | 高度分类 协同战术 | 前方高度保持类协同战术集FRC(EA/PA)、侧方高度保持类协同战术集LRC(LA/HDO)、垂直疏开战术(VDO)、组合疏开战术(CDO)、尾后攻击战术(DA) |
CT | 协同战术 | 对头攻击战术(EA)、侧方攻击战术(LA)、尾后攻击战术(DA)、钳形攻击战术(PA)、水平疏开战术(HDO)、垂直疏开战术(VDO)、组合疏开战术(CDO) |
Table 3
CPT of altitude classification results"
ICT | (H, E, L) | |
P(ALT1|ICT) | P(ALT2|ICT) | |
ICT_FR | (0.29, 0.42, 0.29) | (0.29, 0.42, 0.29) |
ICT_LR | (0.29, 0.42, 0.29) | (0.29, 0.42, 0.29) |
ICT_VDO | (0.39, 0.22, 0.39) | (0.39, 0.22, 0.39) |
ICT_CDO | (0.36, 0.28, 0.36) | (0.36, 0.28, 0.36) |
ICT_DA | (0.32, 0.36, 0.32) | (0.32, 0.36, 0.32) |
1 | HUANG Y Y . Modeling and simulation method of the emergency response systems based on OODA[J]. Knowledge Based Systems, 2015, 89 (3): 527- 540. |
2 | SHIN H , LEE J , KIM H , et al. An autonomous aerial combat framework for two-on-two engagements based on basic fighter maneuvers[J]. Aerospace Science and Technology, 2018, 72 (2): 305- 315. |
3 |
XU X M , YANG R N , FU Y . Situation assessment for air combat based on novel semi-supervised naive Bayes[J]. Journal of Systems Engineering and Electronics, 2018, 29 (4): 768- 779.
doi: 10.21629/JSEE.2018.04.11 |
4 |
KUMAR S , TRIPATHI B K . Modelling of threat evaluation for dynamic targets using bayesian network approach[J]. Procedia Technology, 2016, 24, 1268- 1275.
doi: 10.1016/j.protcy.2016.05.112 |
5 | DI R H , GAO X G , GUO Z G , et al. A threat assessment method for unmanned aerial vehicle based on Bayesian networks under the condition of small data sets[J]. Mathematical Problems in Engineering, 2018, (5): 8484358. |
6 |
PARK H , LEE B Y , TAHK M J , et al. Differential game based air combat maneuver generation using scoring function matrix[J]. International Journal of Aeronautical and S-pace Sciences, 2016, 17 (2): 204- 213.
doi: 10.5139/IJASS.2016.17.2.204 |
7 |
XU Y J , WANG Y G , MIU X D . Multi-attribute decision ma-king method for air target threat evaluation based on intuitionistic fuzzy sets[J]. Journal of Systems Engineering and Electro-nics, 2012, 23 (6): 891- 897.
doi: 10.1109/JSEE.2012.00109 |
8 | AZIMIRAD E , HADDADNIA J . Target threat assessment using fuzzy sets theory[J]. Advances in Intelligent Information, 2015, 1 (2): 57- 74. |
9 |
ZHAO H Y , MA W M , SUN B Z . A novel decision-making approach based on intuitionistic fuzzy soft sets[J]. International Journal of Machine Learning and Cybernetics, 2017, 8 (4): 1107- 1117.
doi: 10.1007/s13042-015-0481-z |
10 | AZADEH Z K , ADEM K , ABDUL R S . Application of a prefe-rence relationship in decision-making based on intuitionistic fuzzy soft sets[J]. Journal of Intelligent & Fuzzy Systems, 2018, 34 (1): 123- 139. |
11 | ZHANG Q , HU J H , FENG J F , et al. Air multi-target threat assessment method based on improved GGIFSS[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36 (5): 4127- 4139. |
12 |
AGARWAL M , BISWAS K K , HANMAN-DLU M . Genera-lized ntuitionistic fuzzy soft sets with applications in decision making[J]. Applied Soft Computing, 2013, 13 (8): 3552- 3566.
doi: 10.1016/j.asoc.2013.03.015 |
13 | ZHANG K , KONG W R , LIU P P , et al. Assessment and sequencing of target threat based on intuitionistic fuzzy entropy and dynamic VIKOR[J]. Journal of Systems Engineering and Electronics, 2018, 29 (2): 305- 310. |
14 | MA S D , ZHANG H Z , YANG G Q . Target threat level assessment based on cloud model under fuzzy and uncertain conditions in air combat simulation[J]. Aerospace Science and Technology, 2017, 67 (4): 49- 53. |
15 |
CHEN J , YU G H , GAO X G . Cooperative threat assessment of multi-aircrafts based on synthetic fuzzy cognitive map[J]. Journal of Shanghai Jiaotong University (Science), 2012, 17 (2): 228- 232.
doi: 10.1007/s12204-012-1257-1 |
16 | ZHU W L, ZANG Z Q, LI P J, et al. A method of radar threat identification based on entropy-TOPSIS[C]//Proc.of the 2nd International Conference on Electronic Information and Communication Technology, 2019: 896-899. |
17 | 张浩为, 谢军伟, 葛佳昂, 等. 改进TOPSIS的多态融合直觉模糊威胁评估[J]. 系统工程与电子技术, 2018, 40 (10): 2263- 2269. |
ZHANG H W , XIE J W , GE J A , et al. Intuitionistic fuzzy set threat assessment based on improved TOPSIS and multiple times fusion[J]. Systems Engineering and Electronics, 2018, 40 (10): 2263- 2269. | |
18 |
SUN H W , XIE X F . Threat evaluation method of warships formation air defense based on AR(p)-DITOPSIS[J]. Journal of Systems Engineering and Electronics, 2019, 30 (2): 297- 307.
doi: 10.21629/JSEE.2019.02.09 |
19 | WANG B H, HUANG J G, QIN X S, et al. Research on FTOPSIS model of threat synthetic evaluation in multi-target tracing system[C]//Proc.of the International Conference on Industrial Engineering and Engineering Management, 2007: 35-39. |
20 | 杨远志, 于雷, 周中良, 等. 基于RS_TOPSIS的空中目标威胁评估[J]. 北京航空航天大学学报, 2018, 44 (5): 1001- 1007. |
YANG Y Z , YU L , ZHOU Z L , et al. Air target threat evalua-tion based on RS_TOPSIS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (5): 1001- 1007. | |
21 | 唐鑫, 杨建军, 冯松, 等. 数据缺失状态下目标威胁评估的AR(p)动态突变排序法[J]. 系统工程与电子技术, 2017, 39 (5): 1058- 1064. |
TANG X , YANG J J , FENG S , et al. AR-(p) dynamic cata-strophe ranking method of target threat assessment under the loss of data[J]. Systems Engineering and Electronics, 2017, 39 (5): 1058- 1064. | |
22 | 孟光磊, 张慧敏, 朴海音, 等. 自动化飞行训练评估中的战机机动动作识别[J]. 北京航空航天大学学报, 2020, 46 (7): 1267- 1274. |
MENG G L , ZHANG H M , PIAO H Y , et al. Recognition of fighter maneuver in automatic fight training evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (7): 1267- 1274. | |
23 |
SCHREIER M , WILLERT V , ADAMY J . An integrated approach to maneuver based trajectory prediction and criticality assessment in arbitrary road environments[J]. IEEE Trans.on Intelligent Transportation Systems, 2016, 17 (10): 2751- 2766.
doi: 10.1109/TITS.2016.2522507 |
24 | 潘媚媚, 曹运合, 王宇, 等. 基于机动判别的变结构交互多模型跟踪算法[J]. 系统工程与电子技术, 2019, 41 (4): 730- 736. |
PAN M M , CAO Y H , WANG Y , et al. Variable structure interactive multi-model tracking algorithm based on maneuver discrimination[J]. Systems Engineering and Electronics, 2019, 41 (4): 730- 736. | |
25 | NAEEM H , MASOOD A . An optimal dynamic threat evaluation and weapon scheduling technique[J]. Knowledge-Based Systems, 2010, 23 (4): 337- 342. |
26 |
YANG X Y , WANG J K , ZHU R D . Random walks for synthetic aperture radar image fusion in framelet domain[J]. IEEE Trans.on Image Processing, 2018, 27 (2): 851- 862.
doi: 10.1109/TIP.2017.2747093 |
27 | 童奇, 李建勋, 童中翔, 等. 基于机动识别的空战意图威胁建模与仿真[J]. 现代防御技术, 2014, 42 (4): 174- 184. |
TONG Q , LI J X , TONG Z X , et al. Aircombat intention threat modeling and simulation based on maneuver recognition[J]. Mo-dern Defense Technology, 2014, 42 (4): 174- 184. | |
28 | SHEN M X , XU J , ZHENG W T . Threaten assessment based on grey fixed weight cluster decision making for aerial target[J]. Advances in System Science and Applications, 2007, 7 (2): 218- 223. |
29 | ZHANG H X , KANG B Y , LI Y , et al. Target threat assessment based on interval data fusion[J]. Journal of Computational Information Systems, 2012, 6 (8): 2609- 2616. |
30 | SU W S , SHIN H S , CHEN L , et al. Cooperative interception strategy for multiple inferior missiles against one highly maneuvering target[J]. Aerospace Science and technology, 2018, 80 (9): 91- 100. |
31 |
HUANG C Q , DONG K S , HUANG H , et al. Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization[J]. Journal of Systems Engineering and Electronics, 2018, 29 (1): 86- 97.
doi: 10.21629/JSEE.2018.01.09 |
[1] | GE Shun, XIA Xue-zhi. DSBN used for recognition of tactical intention [J]. Systems Engineering and Electronics, 2014, 36(1): 76-83. |
[2] | . Situation assessment using variable structure interval probability dynamic Bayesian network [J]. Systems Engineering and Electronics, 2013, 35(9): 1891-1897. |
[3] | GUO Wen-qiang, GAO Xiao-guang, REN Jia. Structure learning for piecewise stationary varying DBN in model section [J]. Journal of Systems Engineering and Electronics, 2012, 34(4): 704-708. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||