Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (5): 1734-1744.doi: 10.12305/j.issn.1001-506X.2024.05.26
• Guidance, Navigation and Control • Previous Articles
Xinyun ZHAO, Jianqiao YU
Received:
2023-05-24
Online:
2024-04-30
Published:
2024-04-30
Contact:
Jianqiao YU
CLC Number:
Xinyun ZHAO, Jianqiao YU. Multi-source force combined control method for novel agile projectiles[J]. Systems Engineering and Electronics, 2024, 46(5): 1734-1744.
1 |
GONG X P , CHEN W C , CHEN Z Y . All-aspect guidance law for agile missiles based on deep reinforcement learning[J]. Aerospace Science and Technology, 2022, 127, 107677.
doi: 10.1016/j.ast.2022.107677 |
2 |
THUKRAL A , INNOCENTI M . A sliding mode missile pitch autopilot synthesis for high angle of attack maneuvering[J]. IEEE Trans.on Control Systems Technology, 1998, 6 (3): 359- 371.
doi: 10.1109/87.668037 |
3 |
毕永涛, 王宇航, 姚郁. 直/气复合控制导弹的模型预测和自抗扰姿态控制设计[J]. 宇航学报, 2015, 36 (12): 1373- 1383.
doi: 10.3873/j.issn.1000-1328.2015.12.005 |
BI Y T , WANG Y H , YAO Y . Attitude control design of missiles with dual control based on model predictive control and active disturbance rejection control[J]. Journal of Astronautics, 2015, 36 (12): 1373- 1383.
doi: 10.3873/j.issn.1000-1328.2015.12.005 |
|
4 |
MA Y Y , GUO J , TANG S J . High angle of attack command generation technique and tracking control for agile missiles[J]. Aerospace Science and Technology, 2015, 45, 324- 334.
doi: 10.1016/j.ast.2015.06.003 |
5 | 霍鑫, 彭继平, 马克茂, 等. 空空导弹敏捷转弯的分段线性滑模控制设计[J]. 系统工程与电子技术, 2017, 39 (10): 2278- 2284. |
HUO X , PENG J P , MA K M , et al. Piecewise linear sliding mode control design for agile turn of air-to-air missile[J]. Systems Engineering and Electronics, 2017, 39 (10): 2278- 2284. | |
6 |
GUO Y , GUO J H , LIU X , et al. Finite-time blended control for air-to-air missile with lateral thrusters and aerodynamic surfaces[J]. Aerospace Science and Technology, 2020, 97, 105638.
doi: 10.1016/j.ast.2019.105638 |
7 | 刘祥, 李爱军, 郭永, 等. 固定时间收敛的空空导弹直接力/气动力复合控制[J]. 哈尔滨工业大学学报, 2019, 51 (9): 29-34, 42. |
LIU X , LI A J , GUO Y , et al. Fixed-time convergence blended control for air-to-air missile with lateral thrusters and aerodynamic force[J]. Journal of Harbin Institute of Technology, 2019, 51 (9): 29-34, 42. | |
8 |
KIM Y , KIM B S . Pitch autopilot design for agile missiles with uncertain aerodynamic coefficients[J]. IEEE Trans.on Aerospace and Electronic Systems, 2013, 49 (2): 907- 914.
doi: 10.1109/TAES.2013.6494388 |
9 |
MAHMOOD A , KIM Y , PARK J . Robust H∞ autopilot design for agile missile with time-varying parameters[J]. IEEE Trans.on Aerospace and Electronic Systems, 2014, 50 (4): 3082- 3089.
doi: 10.1109/TAES.2014.130750 |
10 | 赵新运, 于剑桥. 导弹敏捷转弯段的新型非奇异终端滑模控制[J]. 宇航学报, 2022, 43 (4): 454- 464. |
ZHAO X Y , YU J Q . Novel non-singular terminal sliding mode control for missile's agile turn[J]. Journal of Astronautics, 2022, 43 (4): 454- 464. | |
11 | 李政, 于剑桥, 赵新运. 空空导弹敏捷转弯固定时间收敛滑模控制[J]. 航空学报, 2023, 44 (8): 327262. |
LI Z , YU J Q , ZHAO X Y . Fixed-time convergent sliding mode control for agile turn of air-to-air missiles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (8): 327262. | |
12 | 李健, 房冠辉, 吕智慧, 等. 天问一号火星探测器伞系减速分系统设计与验证[J]. 中国科学: 技术科学, 2022, 52 (2): 264- 277. |
LI J , FANG G H , LYU Z H , et al. Design and verification of parachute deceleration subsystem of Tianwen-1 Mars probe[J]. Scientia Sinica Technologica, 2022, 52 (2): 264- 277. | |
13 | 董捷, 饶炜, 孙泽洲, 等. 火星伞降段多体动力学特性分析与安全设计研究[J]. 中国科学: 技术科学, 2022, 52 (8): 1175- 1185. |
DONG J , RAO W , SUN Z Z , et al. Multibody dynamics characteristics analysis and safety design research of the Mars parachute descent process[J]. Scientia Sinica Technologica, 2022, 52 (8): 1175- 1185. | |
14 |
WHITE F M , WOLF D F . A theory of three-dimensional parachute dynamic stability[J]. Journal of Aircraft, 1968, 5 (1): 86- 92.
doi: 10.2514/3.43912 |
15 |
WOLF D F . Dynamic stability of a nonrigid parachute and payload system[J]. Journal of Aircraft, 1971, 8 (8): 603- 609.
doi: 10.2514/3.59145 |
16 |
DOHERR K F , SCHILLING H . Nine-degree-of-freedom simulation of rotating parachute systems[J]. Journal of Aircraft, 1992, 29 (5): 774- 781.
doi: 10.2514/3.46245 |
17 |
XING X J , FENG L , CHEN M P , et al. Modeling and research of a multi-stage parachute system for the booster recovery[J]. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, 2023, 237 (5): 1135- 1157.
doi: 10.1177/09544100221118238 |
18 | COCKRELL D J, DOHERR K F. Preliminary consideration of parameter identification analysis from parachute aerodynamic flight test data[R]. San Diego: AIAA, 1981. |
19 |
EATON J A . Added mass and the dynamics stability of parachutes[J]. Journal of Aircraft, 1982, 19 (5): 414- 416.
doi: 10.2514/3.44766 |
20 |
EATON J A . Added fluid mass and the equations of motion of a parachute[J]. Aeronautical Quarterly, 1983, 34 (3): 226- 242.
doi: 10.1017/S0001925900009720 |
21 | GINN J M, CLARK I G, BRAUN R D. Parachute dynamics stability and the effects of apparent inertial[R]. Atlanta: AIAA, 2014. |
22 | CAO Y H , WEI N . Flight trajectory simulation and aerodynamic parameter identification of large-scale parachute[J]. International Journal of Aerospace Engineering, 2020, 2020, 5603169. |
23 |
GAO X L , ZHANG Q B , TANG Q G . Parachute dynamics and perturbation analysis of precision airdrop system[J]. Chinese Journal of Aeronautics, 2016, 29 (3): 596- 607.
doi: 10.1016/j.cja.2016.04.003 |
24 |
PHAM T D , NGUYEN A T , LE V D , et al. Trajectory analyses of uncontrolled circular parachutes in random spatial wind fields[J]. Journal of Mechanical Science and Technology, 2022, 36 (8): 3825- 3835.
doi: 10.1007/s12206-022-0706-5 |
25 | DOBROKHODOV V, YAKIMENKO O, JUNGE C. Six-degree-of-freedom model of a controlled circular parachute[R]. Monterey: AIAA, 2002. |
26 |
FIELDS T D , LACOMBE J C , WANG E L . Autonomous guidance of a circular parachute using descent rate control[J]. Journal of Guidance, Control, and Dynamics, 2012, 35 (4): 1367- 1370.
doi: 10.2514/1.55919 |
27 | FIELDS T D, BASORE N. Reversible control line reefing system for circular parachutes[R]. Daytona Beach: AIAA, 2015. |
28 |
FIELDS T D . Evaluation of control line reefing systems for circular parachute[J]. Journal of Aircraft, 2016, 53 (3): 855- 859.
doi: 10.2514/1.C033524 |
29 | 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2000. |
QIAN X F , LIN R X , ZHAO Y N . Missile flight dynamics[M]. Beijing: Beijing Institute of Technology Press, 2000. | |
30 |
HAN J Q . From PID to active disturbance rejection control[J]. IEEE Trans.on Industrial Electronics, 2009, 56 (3): 900- 906.
doi: 10.1109/TIE.2008.2011621 |
31 |
XIONG S F , WANG W H , LIU X D , et al. A novel extended state observer[J]. ISA Transactions, 2015, 58, 309- 317.
doi: 10.1016/j.isatra.2015.07.012 |
32 | UTKIN V I . Control systems of variable structure[M]. New York: Wiley, 1976. |
33 | 高为炳. 变结构控制的理论及设计方法[M]. 北京: 科学出版社, 1996. |
GAO W B . Theory and design method for variable sliding mode control[M]. Beijing: Science Press, 1996. | |
34 |
DING S H , MEI K Q , YU X H . Adaptive second-order sliding mode control: a Lyapunov approach[J]. IEEE Trans.on Automatic Control, 2022, 67 (10): 5392- 5399.
doi: 10.1109/TAC.2021.3115447 |
35 |
CAO X Q , GE Q X , ZHU J Q , et al. Improved sliding mode traction control combined sliding mode disturbance observer strategy for high-speed Maglev train[J]. IEEE Trans.on Power Electronics, 2023, 38 (1): 827- 838.
doi: 10.1109/TPEL.2022.3201614 |
36 |
HOU H Z , YU X H , FU Z . Sliding mode control of networked control systems: an auxiliary matrices-based approach[J]. IEEE Trans.on Automatic Control, 2022, 67 (7): 3574- 3581.
doi: 10.1109/TAC.2021.3103882 |
37 |
FENG Y , YU X H , MAN Z H . Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38 (12): 2159- 2167.
doi: 10.1016/S0005-1098(02)00147-4 |
38 | 梅红, 王勇. 快速收敛的机器人滑模变结构控制[J]. 信息与控制, 2009, 38 (5): 552- 557. |
MEI H , WANG Y . Fast convergent sliding mode variable structure control of robot[J]. Information and Control, 2009, 38 (5): 552- 557. |
[1] | Qiushi ZHENG, Weichun XU, Minghan ZHAO, Naixing LI, Xuxin BAO. Research on roll control technology of trajectory correction fuse with active-canards [J]. Systems Engineering and Electronics, 2024, 46(4): 1412-1421. |
[2] | Yang GUI, Bochao ZHENG, Peng GAO. Sliding mode attitude control of quadrotor UAV based on NESO-LFDC [J]. Systems Engineering and Electronics, 2024, 46(3): 1075-1083. |
[3] | Yali NIU, Jingwei XU, Guisheng LIAO, Qingyun KAN, Guangjun LIU. Clutter suppression approach for missile-borne HPRF radar with sum-difference antenna [J]. Systems Engineering and Electronics, 2023, 45(8): 2455-2462. |
[4] | Yushi JIANG, Yang CHEN, Lu GAO, Ligen CAI, Jixing LYU. Predefined-time adaptive control for heavy-lift launch vehicles [J]. Systems Engineering and Electronics, 2023, 45(8): 2570-2577. |
[5] | Leilei ZHANG, Xi LIU, Xulin LIU, Hongjun YANG, Feng ZHANG. Accelerated storage life assessment method under zero-failure data for electromechanical products of missile [J]. Systems Engineering and Electronics, 2023, 45(7): 2287-2294. |
[6] | Wenfei ZHAO, Xiaolei LIU, Cuiling MA, Kenan TENG. DWTA of air defense for strategic location on the sea based on multi-objective fuzzy programming [J]. Systems Engineering and Electronics, 2023, 45(3): 777-784. |
[7] | Jiancheng ZHENG, Zhiguo QU, Xiansi TAN, Jingyang WANG, Lujun LI. Comparison of early warning detection characteristics between anti-near-space and anti-missile [J]. Systems Engineering and Electronics, 2023, 45(2): 379-385. |
[8] | Botao SONG, Guangliang XU. Missile trajectory prediction method based on LSTM and 1DCNN [J]. Systems Engineering and Electronics, 2023, 45(2): 504-512. |
[9] | Xiaofeng XUE, Guangduo XU, Yunwen FENG, Jiaqi LIU, Tao GAO, Shixi GUO, Wei ZHANG. Design of temperature stepping enhancement test profile based on component derating design [J]. Systems Engineering and Electronics, 2023, 45(12): 4073-4083. |
[10] | Yuan GUO, Zhiyong SUO, Tingting WANG, Zhiquan DING. Configuration parameter optimization design method of MBFL-SAR [J]. Systems Engineering and Electronics, 2023, 45(11): 3449-3454. |
[11] | Xiaowen ZHU, Chengli FAN, Yingqi LU, Wenzheng ZHU, Xuan WU. Anti-missile weapon target allocation modeling and implementation based on improved BBO algorithm and fuzzy expectation effect [J]. Systems Engineering and Electronics, 2023, 45(11): 3544-3554. |
[12] | Zichao LIU, Jiang WANG, Shaoming HE. Time and angle control guidance law based on deep learning [J]. Systems Engineering and Electronics, 2023, 45(11): 3579-3587. |
[13] | Yuxin GAO, Chunsheng LIU. Differential game-based learning sliding mode guidance for non-affine missile system [J]. Systems Engineering and Electronics, 2023, 45(11): 3616-3623. |
[14] | Ruining LUO, Shucai HUANG, Yan ZHAO, Zhen ZHANG. Guidance strategy of mother-son missile against unmanned aerial vehicle cluster [J]. Systems Engineering and Electronics, 2023, 45(10): 3249-3258. |
[15] | Hengyi ZHAN, Yachao LI, Chunfeng WU, Xuan SONG, Tinghao ZHANG. Analytic-iterative positioning method for missile-borne bistatic forward-looking imaging radar [J]. Systems Engineering and Electronics, 2023, 45(1): 71-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||