Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (3): 1075-1083.doi: 10.12305/j.issn.1001-506X.2024.03.34
• Guidance, Navigation and Control • Previous Articles Next Articles
Yang GUI1, Bochao ZHENG1,2,*, Peng GAO1
Received:
2022-11-18
Online:
2024-02-29
Published:
2024-03-08
Contact:
Bochao ZHENG
CLC Number:
Yang GUI, Bochao ZHENG, Peng GAO. Sliding mode attitude control of quadrotor UAV based on NESO-LFDC[J]. Systems Engineering and Electronics, 2024, 46(3): 1075-1083.
Table 2
Simulation parameters of inner and outer ring controllers"
姿态角 | k1 | k2 | k3 | k4 | τ | ξ | q | p |
ϕ | 0.2 | 0.2 | 40 | 70 | 0.8 | 3 | 7 | 5 |
θ | 0.2 | 0.2 | 40 | 70 | 0.8 | 3 | 7 | 5 |
ψ | 0.2 | 0.2 | 40 | 70 | 0.8 | 3 | 9 | 7 |
姿态角 | α | ε | kw | λ | δ | r0 | h | |
ϕ | 0.05 | 10 | 0.3 | 50 | 500 | 0.001 | ||
θ | 0.05 | 10 | 0.3 | 50 | 500 | 0.001 | ||
ψ | 0.05 | 10 | 0.3 | 50 | 500 | 0.001 |
1 |
KENDOUL F . Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems[J]. Journal of Field Robotics, 2012, 29 (2): 315- 378.
doi: 10.1002/rob.20414 |
2 | 陈琳, 刘允刚. 面向无人机的视觉目标跟踪算法: 综述与展望[J]. 信息与控制, 2022, 51 (1): 23- 40. |
CHEN L , LIU Y G . UAV visual target tracking algorithms: review and future prospect[J]. Information and Control, 2022, 51 (1): 23- 40. | |
3 | 张镭, 李浩. 四旋翼飞行器模糊PID姿态控制[J]. 计算机仿真, 2014, 31 (8): 73- 77. |
ZHANG L , LI H . Attitude control of four-rotor aircraft via fuzzy PID[J]. Computer Simulation, 2014, 31 (8): 73- 77. | |
4 |
GAUTAM D , HA C . Control of a quadrotor using a smart self-tuning fuzzy PID controller[J]. International Journal of Advanced Robotic Systems, 2013, 10 (11): 380.
doi: 10.5772/56911 |
5 |
ELTAYEB A , RAHMAT M , ELTOUM M , et al. Robust adaptive sliding mode control design for quadrotor unmanned aerial vehicle trajectory tracking[J]. International Journal of Computing and Digital Systems, 2020, 9 (2): 249- 257.
doi: 10.12785/ijcds/090210 |
6 | LIAN S K , MENG W , LIN Z M , et al. Adaptive attitude control of a quadrotor using fast nonsingular terminal sliding mode[J]. IEEE Trans. on Industrial Electronics, 2021, 69 (2): 1597- 1607. |
7 | 张勇, 陈增强, 张兴会, 等. 四旋翼无人机系统PD-ADRC串级控制[J]. 系统工程与电子技术, 2018, 40 (9): 2055- 2061. |
ZHANG Y , CHEN Z Q , ZHANG X H , et al. PD-ADRC cascade control for quadrotor system[J]. Systems Engineering and Electronics, 2018, 40 (9): 2055- 2061. | |
8 | 郑世钰, 艾晓琳, 杨迪, 等. 基于积分反步法的四旋翼滑模轨迹跟踪算法[J]. 系统工程与电子技术, 2019, 41 (3): 643- 650. |
ZHANG S Y , AI X L , YANG D , et al. Integral backstepping based sliding mode trajectory tracking algorithm for quadrotor[J]. Systems Engineering and Electronics, 2019, 41 (3): 643- 650. | |
9 | LIAN S K , MENG W , LIN Z M , et al. Adaptive attitude control of a quadrotor using fast nonsingular terminal sliding mode[J]. IEEE Trans. on Industrial Electronics, 2021, 69 (2): 1597- 1607. |
10 |
ZHU G Q , WANG S , SUN L F , et al. Output feedback adaptive dynamic surface sliding-mode control for quadrotor UAVs with tracking error constraints[J]. Complexity, 2020,
doi: 10.1155/2020/8537198 |
11 | XIONG J J, ZHANG G. Sliding mode control for a quadrotor UAV with parameter uncertainties[C]//Proc. of the 2nd International Conference on Control, Automation and Robotics, 2016: 207-212. |
12 |
REINOSO M J , MINCHALA L I , ORTIZ P , et al. Trajectory tracking of a quadrotor using sliding mode control[J]. IEEE Latin America Transactions, 2016, 14 (5): 2157- 2166.
doi: 10.1109/TLA.2016.7530409 |
13 |
NEKOUKAR V , DEHKORDI N M . Robust path tracking of a quadrotor using adaptive fuzzy terminal sliding mode control[J]. Control Engineering Practice, 2021, 110, 104763.
doi: 10.1016/j.conengprac.2021.104763 |
14 |
HASSANI H , MANSOURI A , AHAITOUF A . Robust autonomous flight for quadrotor UAV based on adaptive nonsingular fast terminal sliding mode control[J]. International Journal of Dynamics and Control, 2021, 9, 619- 635.
doi: 10.1007/s40435-020-00666-3 |
15 |
ZHAO G L , CHEN G B , CHEN J N , et al. Finite-time control for image-based visual servoing of a quadrotor using nonsingular fast terminal sliding mode[J]. International Journal of Control, Automation and Systems, 2020, 18 (9): 2337- 2348.
doi: 10.1007/s12555-019-0005-9 |
16 | YANG H J , CHENG L , XIA Y Q , et al. Active disturbance rejection attitude control for a dual closed-loop quadrotor under gust wind[J]. IEEE Trans. on Control Systems Technology, 2017, 26 (4): 1400- 1405. |
17 |
LI X R , CHEN M . Extended state observer-based nonlinear cascade proportional-integral-derivative control of the nano quadrotor[J]. Advances in Mechanical Engineering, 2016,
doi: 10.1177/1687814016680799 |
18 | ZHANG Y , CHEN Z Q , SUN M W , et al. Trajectory tracking control of a quadrotor UAV based on sliding mode active disturbance rejection control[J]. Nonlinear Analysis: Modelling and Control, 2019, 24 (4): 545- 560. |
19 | DING L , HE Q , WANG C J , et al. Disturbance rejection attitude control for a quadrotor: theory and experiment[J]. International Journal of Aerospace Engineering, 2021, 8850071. |
20 | XIONG J X , PAN J , CHEN G Y , et al. Sliding mode dual-channel disturbance rejection attitude control for a quadrotor[J]. IEEE Trans. on Industrial Electronics, 2021, 69 (10): 10489- 10499. |
21 | ZHAO K , ZHANG J H , MA D L , et al. Composite distur-bance rejection attitude control for quadrotor with unknown disturbance[J]. IEEE Trans. on Industrial Electronics, 2019, 67 (8): 6894- 6903. |
22 | MAHONY R , KUMAR V , CORKE P . Multirotor aerial vehicles: modeling, estimation, and control of quadrotor[J]. IEEE Robotics & Automation Magazine, 2012, 19 (3): 20- 32. |
23 |
AILON A , AROGETI S . Closed-form nonlinear tracking controllers for quadrotors with model and input generator uncertainties[J]. Automatica, 2015, 54, 317- 324.
doi: 10.1016/j.automatica.2015.02.020 |
24 | BESANÇON G . Nonlinear observers and applications[M]. Berlin: Springer, 2007. |
25 | GUO B Z , ZHAO Z . On the convergence of an extended state observer for nonlinear systems with uncertainty[J]. Systems & Control Letters, 2011, 60 (6): 420- 430. |
26 | 张世华, 齐晓慧, 万慧. 广义非线性扩张状态观测器设计及性能分析[J]. 控制理论与应用, 2021, 38 (12): 2059- 2068. |
ZHANG S H , QI X H , WAN H . Design and performance analysis of generalized nonlinear extended state observer[J]. Control Theory and Applications, 2021, 38 (12): 2059- 2068. | |
27 |
CHEN L L , LIU Z B , DANG Q Q , et al. Robust trajectory tracking control for a quadrotor using recursive sliding mode control and nonlinear extended state observer[J]. Aerospace Science and Technology, 2022, 128, 107749.
doi: 10.1016/j.ast.2022.107749 |
28 |
BOUKATTAYA M , MEZGHANI N , DAMAK T . Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems[J]. ISA Transactions, 2018, 77, 1- 19.
doi: 10.1016/j.isatra.2018.04.007 |
29 | HUA C C , WANG K , CHEN J N , et al. Tracking differentiator and extended state observer-based nonsingular fast terminal sliding mode attitude control for a quadrotor[J]. Nonlinear Dynamics, 2018, 94 (1): 343- 354. |
30 | ZHU C J , CHEN J C , ZHANG H . Attitude control for quadrotors under unknown disturbances using triple-step method and nonlinear integral sliding mode[J]. IEEE Trans. on Industrial Electronics, 2022, 70 (5): 5004- 5012. |
[1] | Yanling LI, Feizhou LUO, Zhilei GE. Robust observer-based deep reinforcement learning for attitude stabilization of vertical takeoff and landing vehicle [J]. Systems Engineering and Electronics, 2024, 46(3): 1038-1047. |
[2] | Yuyu ZHAO, Chao SUO, Yuxiao WANG. Differential flatness-based tracking control method for hypersonic vehicle [J]. Systems Engineering and Electronics, 2024, 46(3): 1084-1092. |
[3] | Jiaqi BAI, Yankai WANG, Hao XING. Fixed-time heterogeneous formation control of unmanned boats and quadrotor unmanned aerial vehicle [J]. Systems Engineering and Electronics, 2023, 45(4): 1152-1163. |
[4] | Wenqi YANG, Jianhua LU, Xu JIANG, Yuanxin WANG. Design of quadrotor attitude active disturbance rejection controller based on improved ESO [J]. Systems Engineering and Electronics, 2022, 44(12): 3792-3799. |
[5] | Shuangshuang WANG, Chuntao LI, Zhen WANG, Zikang SU, Fei DAI. Design of carrier landing controller based on adaptive dynamic inversion [J]. Systems Engineering and Electronics, 2022, 44(1): 218-225. |
[6] | Yang XU, Mingren HAN, Jiang SHAO, Delin LUO. Attitude antagonistic consensus control of satellite swarm system based on MRPs [J]. Systems Engineering and Electronics, 2021, 43(7): 1904-1911. |
[7] | Zongxing LI, Rui ZHANG. Missile adaptive attitude control based on Riccati equation [J]. Systems Engineering and Electronics, 2020, 42(6): 1358-1365. |
[8] | Li LU, Jie WANG, Chengren YUAN, Yahui WU. Design and application of tracking differentiator based on inverse hyperbolic tangent function [J]. Systems Engineering and Electronics, 2020, 42(12): 2875-2883. |
[9] | TAN Shili, LEI Humin, WANG Pengfei. Design of tracking differentiator based on tangent Sigmoid function [J]. Systems Engineering and Electronics, 2019, 41(7): 1590-1596. |
[10] | SHU Shi, FANG Jiancheng, ZHANG Wei, LIU Gang, QIAN Yong, ZHANG Jian, CUI Peiling. Composite compensation method to improve the image registration based on MSCMG [J]. Systems Engineering and Electronics, 2019, 41(12): 2827-2834. |
[11] | JIA Qingxian, ZHANG Chengxi, LI Huayi, ZHANG Yingchun. A novel learning observer-based fault reconstruction for satellite actuators [J]. Systems Engineering and Electronics, 2019, 41(12): 2835-2841. |
[12] | DONG Chaoyang, MA Mingyu, WANG Qing, ZHOU Min. Attitude cooperative control of multiple spacecraft on SO(3) with communication time-delay [J]. Systems Engineering and Electronics, 2018, 40(9): 2032-2039. |
[13] | LEI Humin, WANG Yexing, BU Xiangwei, WANG Huaji. Sliding mode control of seeker stabilized platform based on disturbance observer [J]. Systems Engineering and Electronics, 2018, 40(9): 2048-2054. |
[14] | LYU Zheng, JIN Guang, YANG Tianshe, WU Guan, LAN Xinzhang. Multi-level health evaluation method for on orbit satellites based on reconfigurable degree#br# [J]. Systems Engineering and Electronics, 2018, 40(8): 1769-1776. |
[15] | XU Qiuping, CHANG Sijiang, WANG Zhongyuan. Design of adaptive mesh tracking differentiator [J]. Systems Engineering and Electronics, 2018, 40(6): 1212-1220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||