Systems Engineering and Electronics ›› 2023, Vol. 46 ›› Issue (1): 345-356.doi: 10.12305/j.issn.1001-506X.2024.01.39
• Communications and Networks • Previous Articles
Renwei ZUO1, Yinghui LI1,*, Maolong LYU2, Hongyan NIE3
Received:
2022-08-25
Online:
2023-12-28
Published:
2024-01-11
Contact:
Yinghui LI
CLC Number:
Renwei ZUO, Yinghui LI, Maolong LYU, Hongyan NIE. Output-feedback containment control for multi-agents under dynamic self-triggered communication[J]. Systems Engineering and Electronics, 2023, 46(1): 345-356.
2 |
YOO S . Distributed adaptive containment control of uncertain nonlinear multi-agent systems in strict-feedback form[J]. Automatica, 2013, 49 (7): 2145- 2153.
doi: 10.1016/j.automatica.2013.03.007 |
3 | 马悦, 吴琳, 许霄. 基于多智能体强化学习的协同目标分配[EB/OL]. 系统工程与电子技术. https://kns.cnki.net/kcms/detail/11.2422.TN.20220823.1142.006.html. |
MA Y, WU L, XU X. Cooperative targets assignment based on multi-agent rein-forcement learning[EB/OL]. Systems Engineering and Electronics. https://kns.cnki.net/kcms/detail/11.2422.TN.20220823.1142.006.html. | |
4 | 李纪强, 张国庆, 黄晨峰, 等. 考虑执行器故障的无人帆船事件触发控制[J]. 系统工程与电子技术, 2022, 44 (1): 242- 249. |
LI J Q , ZHANG G Q , HUANG C F , et al. Event-triggered control for unmanned sailboat with actuator failures[J]. Systems Engineering and Electronics, 2022, 44 (1): 242- 249. | |
5 |
LONG J , WANG W , WEN C Y , et al. Output feedback based adaptive consensus tracking for uncertain heterogeneous multi-agent systems with event-triggered communi-cation[J]. Automatica, 2022, 136, 110049.
doi: 10.1016/j.automatica.2021.110049 |
6 | 马巧利, 周川, 陈兰浪. 网络控制系统的事件触发与量化控制协同设计[J]. 系统工程与电子技术, 2016, 38 (3): 652- 657. |
MA Q L , ZHOU C , CHEN L L . Co-design of event-trigger and quantized control for networked control systems[J]. Systems Engineering and Electronics, 2016, 38 (3): 652- 657. | |
7 |
HU Q L , SHI Y X , WANG C L . Event-based formation coordinated control for multiple spacec-raft under communication constraints[J]. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2021, 51 (5): 3168- 3179.
doi: 10.1109/TSMC.2019.2919027 |
8 |
DING L , WANG L Y , YIN G Y , et al. Distributed energy management for smart grids with an event-triggered communication scheme[J]. IEEE Trans. on Control Systems Technology, 2019, 27 (5): 1950- 1961.
doi: 10.1109/TCST.2018.2842208 |
9 |
LI W F , XIE Z C , ZHAO J , et al. Velocity-based robust fault tolerant automatic steering control of autonomous ground vehicles via adaptive event triggered network communication[J]. Mechanical Systems and Signal Processing, 2020, 143, 106798.
doi: 10.1016/j.ymssp.2020.106798 |
10 |
BAI W Q , DONG H R , LYU J H , et al. Event-triggering communication based distributed coordinated control of multiple high-speed trains[J]. IEEE Trans. on Vehicular Technology, 2021, 70 (9): 8556- 8566.
doi: 10.1109/TVT.2021.3099529 |
11 |
GIRARD A . Dynamic triggering mechanisms for event-triggered control[J]. IEEE Trans. on Automatic Control, 2015, 60 (7): 1992- 1997.
doi: 10.1109/TAC.2014.2366855 |
12 |
GE X H , HAN Q L . Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism[J]. IEEE Trans. on Industrial Electronics, 2017, 64 (10): 8118- 8127.
doi: 10.1109/TIE.2017.2701778 |
13 |
AHMAD I , GE X , HAN Q . Decentralized dynamic event-triggered communication and active suspension control of in-wheel motor driven electric vehicles with dynamic damping[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8 (5): 971- 986.
doi: 10.1109/JAS.2021.1003967 |
14 |
COUTINHO P , PALHARES R . Co-design of dynamic event-triggered gain-scheduling control for a class of nonlinear systems[J]. IEEE Trans. on Automatic Control, 2022, 67 (8): 4186- 4193.
doi: 10.1109/TAC.2021.3108498 |
15 |
ANTA A , TABUADA P . To sample or not to sample: self-triggered control for nonlinear systems[J]. IEEE Trans. on Automatic Control, 2010, 55 (9): 2030- 2042.
doi: 10.1109/TAC.2010.2042980 |
16 |
WANG X F , LEMMON M . Self-triggering under state-independent disturbances[J]. IEEE Trans. on Automatic Control, 2010, 55, 1494- 1500.
doi: 10.1109/TAC.2010.2045697 |
17 |
WANG J H , ZHANG H K , MA K M , et al. Neural adaptive self-triggered control for uncertain nonlinear systems with input hysteresis[J]. IEEE Trans. on Neural Networks and Learning Systems, 2022, 33 (11): 6206- 6214.
doi: 10.1109/TNNLS.2021.3072784 |
18 |
LI X W , SUN Z Y , TANG Y , et al. Adaptive event-triggered consensus of multiagent systems on directed graphs[J]. IEEE Trans. on Automatic Control, 2021, 66 (4): 1670- 1685.
doi: 10.1109/TAC.2020.3000819 |
19 |
DU S L , XU W Y , QIAO J F . Resilient output synchronization of heterogeneous multiagent systems with DoS attacks under distributed event/self-triggered control[J]. IEEE Trans. on Neural Networks and Learning Systems, 2023, 34 (3): 1169- 1178.
doi: 10.1109/TNNLS.2021.3105006 |
20 |
XU W Y , YANG S F , CAO J D . Fully distributed self-triggered control for second-order consensus of multiagent systems[J]. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2021, 51, 3541- 3551.
doi: 10.1109/TSMC.2019.2930566 |
1 | 张普, 薛惠锋, 高山, 等. 具有混合执行器故障的多智能体分布式有限时间自适应协同容错控制[J]. 系统工程与电子技术, 2022, 44 (4): 1220- 1229. |
ZHANG P , XUE H F , GAO S , et al. Distributed finite-time adaptive cooperative fault-tolerant control for multi-agent systems with integrated actuators faults[J]. Systems Engineering and Electronics, 2022, 44 (4): 1220- 1229. | |
21 |
CHEN D X , LIU X L , YU W W , et al. Neural-network based adaptive self-triggered consensus of nonlinear multi-agent systems with sensor saturation[J]. IEEE Trans. on Network Science and Engineering, 2021, 8 (2): 1531- 1541.
doi: 10.1109/TNSE.2021.3064045 |
22 |
LIU J , ZHANG Y L , YU Y , et al. Fixed-time leader-follower consensus of networked non-linear systems via event/self-triggered control[J]. IEEE Trans. on Neural Networks and Learning Systems, 2020, 31 (11): 5029- 5037.
doi: 10.1109/TNNLS.2019.2957069 |
23 |
WANG Y W , LEI Y , BIAN T , et al. Distributed control of nonlinear multiagent systems with unknown and nonidentical control directions via event-triggered communication[J]. IEEE Trans. on Cybernetics, 2020, 50 (5): 1820- 1832.
doi: 10.1109/TCYB.2019.2908874 |
24 |
LI Y F , LIU L , HUA C C , et al. Event-triggered/self-triggered leader-following control of stochastic nonlinear multiagent systems using high-gain method[J]. IEEE Trans. on Cybernetics, 2021, 51 (6): 2969- 2978.
doi: 10.1109/TCYB.2019.2936413 |
25 |
TAN X G , CAO J D , RUTKOWSKI L , et al. Distributed dynamic self-triggered impulsive control for consensus networks: the case of impulse gain with normal distribution[J]. IEEE Trans. on Cybernetics, 2021, 51 (2): 624- 634.
doi: 10.1109/TCYB.2019.2924258 |
26 |
TAN X G , CAO J D , RUTKOWSKI L . Distributed dynamic self-triggered control for uncertain complex networks with Markov switching topologies and random time-varying delay[J]. IEEE Trans. on Network Science and Engineering, 2020, 7 (3): 1111- 1120.
doi: 10.1109/TNSE.2019.2905758 |
27 |
ZHANG H W , LEWIS F . Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics[J]. Automatica, 2012, 48 (7): 1432- 1439.
doi: 10.1016/j.automatica.2012.05.008 |
28 |
ZUO R W , LI Y H , LYU M L , et al. Learning-based distributed containment control for HFV swarms under event-triggered communication[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (1): 568- 579.
doi: 10.1109/TAES.2022.3185969 |
29 |
KURDILA A , NARCOWICH F , WARD J . Persistency of excitation in identification using radial basis function approximants[J]. SIAM Journal on Control and Optimization, 1995, 33 (2): 625- 642.
doi: 10.1137/S0363012992232555 |
30 |
ZUO R W , DONG X M , LIU Y E , et al. Adaptive neural control for MIMO pure-feedback nonlinear systems with periodic disturbances[J]. IEEE Trans. on Neural Networks and Learning Systems, 2019, 30 (6): 1756- 1767.
doi: 10.1109/TNNLS.2018.2873760 |
31 |
BEHTASH S . Robust output tracking for non-linear systems[J]. International Journal of Control, 1990, 51 (6): 1381- 1407.
doi: 10.1080/00207179008934141 |
32 | JOHANSSON K , EGERSTEDT M , LYGE-ROS J , et al. On the regularization of Zeno hybrid automata[J]. Systems & Control Letters, 1999, 38 (3): 141- 150. |
33 |
PARKER J , SERRANI A , YURKOVICH S , et al. Control-oriented modeling of an air-breathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30 (3): 856- 869.
doi: 10.2514/1.27830 |
34 |
ZUO R W , LI Y H , LYU M L , et al. Fuzzy adaptive output-feedback constrained trajectory tracking control for HFVs with fixed-time convergence[J]. IEEE Trans. on Fuzzy Systems, 2022, 30 (11): 4828- 4840.
doi: 10.1109/TFUZZ.2022.3161732 |
35 |
ZHANG B Y , SUN X X , LIU S , et al. Event-triggered adaptive fault-tolerant synchronization tracking control for multiple 6-DOF fixed-wing UAVs[J]. IEEE Trans. on Vehicular Technology, 2022, 71 (1): 148- 161.
doi: 10.1109/TVT.2021.3129267 |
[1] | Zehong DONG, Yinghui LI, Maolong LYU, Zhe LI, Binbin PEI. Singularity-free fixed-time adaptive switching control for hypersonic flight vehicle with input constraints [J]. Systems Engineering and Electronics, 2023, 45(5): 1476-1488. |
[2] | Jiancheng ZHENG, Zhiguo QU, Xiansi TAN, Jingyang WANG, Lujun LI. Comparison of early warning detection characteristics between anti-near-space and anti-missile [J]. Systems Engineering and Electronics, 2023, 45(2): 379-385. |
[3] | Zhengda CUI, Mingying WEI, Yunqian LI. Semi-analytical encounter time estimation method in dive phase with time-varying drag coefficient [J]. Systems Engineering and Electronics, 2023, 45(2): 530-537. |
[4] | Peichen WANG, Xunliang YAN, Kuan WANG, Xiong ZHENG. Robust trajectory optimization method based on stochastic response surface and polynomial chaos [J]. Systems Engineering and Electronics, 2023, 45(10): 3226-3239. |
[5] | Yi ZHANG, Hao YU, Xiuxia YANG, Zijie JIANG. Adaptive group formation tracking-containment control for heterogeneous unmanned swarm [J]. Systems Engineering and Electronics, 2023, 45(10): 3274-3285. |
[6] | Guan WANG, Haizhong RU, Dali ZHANG, Guangcheng MA, Hongwei XIA. Design of intelligent control system for flexible hypersonic vehicle [J]. Systems Engineering and Electronics, 2022, 44(7): 2276-2285. |
[7] | Yajie XU, Yong XIAN, Bangjie LI, Leliang REN, Shaopeng LI, Weilin GUO. Method for improving the precision of hypersonic vehicle inertial navigation system based on neural network [J]. Systems Engineering and Electronics, 2022, 44(4): 1301-1309. |
[8] | Junbao WEI, Haiyan LI, Jing LI. Novel backstepping control for hypersonic vehicle with angle of attack constraint [J]. Systems Engineering and Electronics, 2022, 44(4): 1310-1317. |
[9] | Tengafei ZHANG, Chunlin GONG, Hua SU, Pengfei XUE. Trajectory optimization based on heat-augmented model and analysis of thermal protection structure [J]. Systems Engineering and Electronics, 2022, 44(3): 929-938. |
[10] | Tong AN, Peng WANG, Jianhua WANG, Guojian TANG, Yulong PAN, Haishan CHEN. Integrated guidance and control schemes for dynamic surface of flexible hypersonic vehicles [J]. Systems Engineering and Electronics, 2022, 44(3): 956-966. |
[11] | Junbiao ZHANG, Jiajun XIONG, Xuhui LAN, Fan LI, Wenjian LIU, Qiushi XI. 3D tracking algorithm of hypersonic gliding target based on adaptive filtering [J]. Systems Engineering and Electronics, 2022, 44(2): 628-636. |
[12] | Caihong YUE, Shengjing TANG, Jie GUO, Xiao WANG, Haoqiang ZHANG. Reentry trajectory rapid optimization for hypersonic telescopic deformable vehicle [J]. Systems Engineering and Electronics, 2021, 43(8): 2232-2243. |
[13] | Jianguo GUO, Yalu SU. Control system design of adaptive dynamic programming for hypersonic vehicle [J]. Systems Engineering and Electronics, 2021, 43(6): 1628-1635. |
[14] | Mingming TIAN, Guisheng LIAO, Yunpeng LI, Shengqi ZHU. Clutter properties and suppression method of hypersonic platform radar [J]. Systems Engineering and Electronics, 2020, 42(2): 301-308. |
[15] | Yan ZHAO, Jianfeng WU, Yupeng GAO. Information fusion method of hypersonic vehicle based on multi-agent navigation [J]. Systems Engineering and Electronics, 2020, 42(2): 405-413. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||