Systems Engineering and Electronics ›› 2023, Vol. 46 ›› Issue (1): 334-344.doi: 10.12305/j.issn.1001-506X.2024.01.38
• Communications and Networks • Previous Articles
Guang YANG1,2, Peiyue QIAO1,*, Junyan LIANG1, Zhengchang QIN1, Xiaodong GONG3,4, Xiuhui NI3,4
Received:
2022-10-28
Online:
2023-12-28
Published:
2024-01-11
Contact:
Peiyue QIAO
CLC Number:
Guang YANG, Peiyue QIAO, Junyan LIANG, Zhengchang QIN, Xiaodong GONG, Xiuhui NI. Accurate underwater acoustic channel estimation based on Gaussian likelihood[J]. Systems Engineering and Electronics, 2023, 46(1): 334-344.
Table 1
Parameters of simulations and experiments"
参数 | 仿真 | 胶州湾500 m | 胶州湾5.5 km |
编码效率 | 1/4 | 1/8 | 1/4 |
功率比r | 0.25∶1 | 0.25∶1 | 0.25∶1 |
短块长度/sym | 256, 512 | 256 | 256 |
CP/sym | 128 | 16 | 16 |
1帧, 1个数据块 | 60块, 512 bits | 16块, 256 bits | 16块, 512 bits |
调制方式 | - | IQ调制 | IQ调制 |
映射, 系统 | QPSK, 基带 | QPSK, 单载波 | QPSK, 单载波 |
1个数据块的时间长度/s | - | 0.27 | 0.27 |
1个符号的时间长度/s | - | 2.5×10-4 | 2.5×10-4 |
中心频率, 滤波 | - | 12 kHz, 带通 | 12 kHz, 带通 |
带宽/kHz | 4 | 4 | 4 |
采样频率/kHz | - | 96 | 96 |
传输速率/(bits/s) | - | 3 765 | 3 765 |
频带利用率/ (bps/Hz) | - | 0.94 | 0.94 |
通信距离/m | - | 500 | 5 500 |
换能器深度/m | - | 4 | 4 |
水听器深度/m | - | 5 | 5 |
相对速度/(m/s) | - | 2 | 0.5 |
SINR/dB | 9~12 | 14 | 14 |
Table 3
Bit error rate performance of GL algorithm with different correlation coefficients (the communication distance is about 500 m, and the relative speed is about 2 m/s)"
块编号 | α=auto | α=0 | α=1 | |||||
迭代次数 | 迭代次数 | 迭代次数 | ||||||
0 | 1 | 0 | 1 | 0 | 1 | |||
1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2 | 0 | 0 | 0 | 0 | 0 | 0 | ||
3 | 0 | 0 | 0 | 0 | 0 | 0 | ||
4 | 0 | 0 | 0 | 0 | 0 | 0 | ||
5 | 0 | 0 | 0 | 0 | 0 | 0 | ||
6 | 0 | 0 | 0 | 0 | 0 | 0 | ||
7 | 0 | 0 | 0 | 0 | 0 | 0 | ||
8 | 0 | 0 | 0 | 0 | 0 | 0 | ||
9 | 0 | 0 | 0 | 0 | 0 | 0 | ||
10 | 0 | 0 | 3.6% | 0 | 0 | 0 | ||
11 | 0 | 0 | 11.2% | 0 | 0 | 0 | ||
12 | 0 | 0 | 8.8% | 0 | 0 | 0 | ||
13 | 0 | 0 | 14.4% | 0 | 0 | 0 | ||
14 | 0 | 0 | 0.4% | 0 | 0 | 0 | ||
15 | 0 | 0 | 18.0% | 0 | 0 | 0 | ||
16 | 13.6% | 0 | 30.8% | 26.0% | 14.0% | 0 | ||
均值 | 0.9% | 0 | 5.5% | 1.6% | 0.9% | 0 |
Table 4
Bit error rate performance of GL algorithm with different correlation coefficients (the communication distance is about 5.5 km, and the relative speed is about 0.5 m/s) %"
块编号 | α=auto | α=0 | α=1 | |||||
迭代次数 | 迭代次数 | 迭代次数 | ||||||
0 | 1 | 0 | 1 | 0 | 1 | |||
1 | 11.6 | 0 | 45.2 | 41.2 | 15.0 | 1.0 | ||
2 | 14.4 | 0 | 40.6 | 38.1 | 17.6 | 3.6 | ||
3 | 3.4 | 0 | 29.2 | 28.8 | 5.9 | 0 | ||
4 | 6.7 | 0 | 42.8 | 38.7 | 10.8 | 0 | ||
5 | 14.4 | 0 | 31.2 | 28.6 | 14.4 | 0.6 | ||
6 | 8.1 | 0 | 36.5 | 20.3 | 5.5 | 0 | ||
7 | 0.4 | 0 | 14.4 | 1.2 | 0.4 | 0 | ||
8 | 0.2 | 0 | 20.1 | 4.1 | 0 | 0 | ||
9 | 0 | 0 | 24.1 | 10.5 | 0.8 | 0 | ||
10 | 0.8 | 0 | 22.1 | 3.6 | 0 | 0 | ||
11 | 0 | 0 | 5.1 | 0 | 0 | 0 | ||
12 | 0 | 0 | 26.4 | 9.5 | 0 | 0 | ||
13 | 0 | 0 | 3.6 | 0 | 0.8 | 0 | ||
14 | 0 | 0 | 5.5 | 0 | 0 | 0 | ||
15 | 0 | 0 | 18.3 | 0 | 0 | 0 | ||
16 | 0.8 | 0 | 27.6 | 4.3 | 0.8 | 0 | ||
均值 | 3.8 | 0 | 24.5 | 14.3 | 4.5 | 0.3 |
1 |
SONG A , STOJANOVIC M , CHITRE M . Editorial underwater acoustic communications: where we stand and what is next?[J]. IEEE Journal of Oceanic Engineering, 2019, 44 (1): 1- 6.
doi: 10.1109/JOE.2018.2883872 |
2 |
QARABAQI P , STOJANOVIC M . Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013, 38 (4): 701- 717.
doi: 10.1109/JOE.2013.2278787 |
3 |
MARTINS N E , JESUS S M . Blind estimation of the ocean acoustic channel by time-frequency processing[J]. IEEE Journal of Oceanic Engineering, 2006, 31 (3): 646- 656.
doi: 10.1109/JOE.2005.850915 |
4 | CAI J J, SU W, ZHANG S N, et al. A semi-blind joint channel estimation and equalization single carrier coherent underwater acoustic communication receiver[C]//Proc. of the OCEANS, 2016. |
5 |
CHO Y H , KO H L . Channel estimation based on adaptive denoising for underwater acoustic OFDM systems[J]. IEEE Access, 2020, 8, 157197- 157210.
doi: 10.1109/ACCESS.2020.3018474 |
6 |
WANG S J , LIU M L , LI D S . Bayesian learning-based clustered-sparse channel estimation for time-varying underwater acoustic OFDM communication[J]. Sensors, 2021, 21 (14): 4889- 4909.
doi: 10.3390/s21144889 |
7 |
YIN J W , GE W , HAN X , et al. Frequency-domain equalization with interference rejection combining for single carrier multiple-input multiple-output underwater acoustic communications[J]. The Journal of the Acoustical Society of America, 2020, 147, 138- 143.
doi: 10.1121/10.0000711 |
8 |
WANG B Y , GUAN X P . Channel estimation for underwater acoustic communications based on orthogonal chirp division multiplexing[J]. IEEE Signal Processing Letters, 2021, 28, 1883- 1887.
doi: 10.1109/LSP.2021.3111569 |
9 |
FENG X , WANG J F , KUAI X Y , et al. Message passing-based impulsive noise mitigation and channel estimation for underwater acoustic OFDM communications[J]. IEEE Trans. on Vehicular Technology, 2022, 71 (1): 611- 625.
doi: 10.1109/TVT.2021.3130061 |
10 |
BERGER C R , ZHOU S , PREISIG J C , et al. Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing[J]. IEEE Trans. on Signal Processing, 2010, 58 (3): 1708- 1721.
doi: 10.1109/TSP.2009.2038424 |
11 |
TADAYON A , STOJANOVIC M . Iterative sparse channel estimation and spatial correlation learning for multichannel acoustic OFDM systems[J]. IEEE Journal of Oceanic Engineering, 2019, 44 (4): 820- 836.
doi: 10.1109/JOE.2019.2932662 |
12 | 尹艳玲, 乔钢, 刘凇佐, 等. 基于基追踪去噪的水声正交频分复用稀疏信道估计[J]. 物理学报, 2015, 64 (6): 227- 234. |
YIN Y L , QIAO G , LIU S Z , et al. Sparse channel estimation of underwater acoustic orthogonal frequency division multiplexing based on basis pursuit denoising[J]. Acta Physica Sinica, 2015, 64 (6): 227- 234. | |
13 | QIAO G , GAN S W , LIU S Z , et al. Self-interference channel estimation algorithm based on maximum-likelihood estimator in in-band full-duplex underwater acoustic communication system[J]. IEEE Access, 2018, 6, 62324- 62334. |
14 | 周跃海, 曹秀岭, 陈东升, 等. 长时延扩展水声信道的联合稀疏恢复估计[J]. 通信学报, 2016, 37 (2): 166- 173. |
ZHOU Y H , CAO X L , CHEN D S , et al. Jointing sparse recovery estimation algorithm of underwater acoustic channels with long time delay spread[J]. Journal on Communications, 2016, 37 (2): 166- 173. | |
15 | ZHOU Y H , TONG F , ZAHNG G Q . Distributed compressed sensing estimation of underwater acoustic OFDM channel[J]. Applied Acoustics, 2017, 117, 160- 166. |
16 | QIN X , QU F , ZHENG Y R . Bayesian iterative channel estimation and turbo equalization for multiple-input multiple-output underwater acoustic communications[J]. IEEE Journal of Ocea-nic Engineering, 2021, 46 (1): 326- 337. |
17 | 秦晔, 鄢社锋, 徐立军, 等. 用于单载波频域均衡水声通信的可分近似稀疏信道估计[J]. 声学学报, 2018, 43 (4): 526- 537. |
QIN Y , YAN S F , XU L J , et al. Sparse channel estimation using separable approximation for underwater acoustic SC-FDE communications[J]. Acta Acustica, 2018, 43 (4): 526- 537. | |
18 | YANG G , GUO Q H , DING H X , et al. Joint message-passing-based bidirectional channel estimation and equalization with superimposed training for underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2021, 46 (4): 1463- 1476. |
19 | YANG G , LIU T L , DING H X , et al. Joint channel estimation and generalized approximate messaging passing-based equalization for underwater acoustic communications[J]. IEEE Access, 2021, 9, 56757- 56764. |
20 | YANG G , WANG L , QIAO P Y , et al. Joint multiple turbo equalization for harsh time-varying underwater acoustic channels[J]. IEEE Access, 2021, 9, 82364- 82372. |
21 | 杨光, 丁寒雪, 郭庆华, 等. 基于叠加训练序列和低复杂度频域Turbo均衡的时变水声信道估计和均衡[J]. 电子与信息学报, 2021, 43 (3): 850- 856. |
YANG G , DING H X , GUO Q H , et al. Estimation and equalization of time-varying underwater acoustic channel based on superimposed training and low-complexity turbo equalization in frequency domain[J]. Journal of Electronics & Information Technology, 2021, 43 (3): 850- 856. | |
22 | GUO Q H , PING L , HUANG D F . A low-complexity iterative channel estimation and detection technique for doubly selective channels[J]. IEEE Trans. on Wireless Communications, 2009, 8 (8): 4340- 4349. |
23 | GUO Q H , HUANG D F . A concise representation for the soft-in soft-out LMMSE detector[J]. IEEE Communications Letters, 2011, 15 (5): 566- 568. |
24 | GUO Q H , HUANG D F , NORDHOLM S , et al. Iterative frequency domain equalization with generalized approximate message passing[J]. IEEE Signal Processing Letters, 2013, 20 (6): 559- 562. |
25 | 王凯, 吴立新, 张雪冬, 等. 水声通信加权反馈双向Turbo均衡器[J]. 声学学报, 2021, 46 (6): 835- 846. |
WANG K , WU L X , ZHANG X D , et al. Bidirectional turbo equalizer with weighted feedback for underwater acoustic communication[J]. Acta Acustica, 2021, 46 (6): 835- 846. | |
26 | XI J Y , YAN S F , XU L J , et al. Frequency-time domain turbo equalization for underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2020, 45 (2): 665- 679. |
27 | 奚钧壹, 鄢社锋, 徐立军, 等. 水声通信系统中双向turbo均衡算法[J]. 声学学报, 2018, 43 (5): 771- 778. |
XI J Y , YAN S F , XU L J , et al. Bidirectional turbo equalization for underwater acoustic communications[J]. Acta Acustica, 2018, 43 (5): 771- 778. | |
28 | OROZCO-LUGO A G , LARA M M , MCLERNON D C . Channel estimation using implicit training[J]. IEEE Trans. on Signal Processing, 2004, 52 (1): 240- 254. |
29 | YIN J W , ZHU G J , HAN X , et al. Iterative channel estimation-based soft successive interference cancellation for multiuser underwater acoustic communications[J]. The Journal of the Acoustical Society of America, 2021, 150 (1): 133- 144. |
30 | HE C B , JING L Y , XI R , et al. Time-frequency domain turbo equalization for single-carrier underwater acoustic communications[J]. IEEE Access, 2019, 7, 73324- 73335. |
31 | ZHAO S D , YAN S F , XI J Y . Adaptive turbo equalization for differential OFDM systems in underwater acoustic communications[J]. IEEE Trans. on Vehicular Technology, 2020, 69 (11): 13937- 13941. |
32 | XI J Y , YAN S F , XU L J , et al. Sparsity-aware adaptive turbo equalization for underwater acoustic communications in the Mariana Trench[J]. IEEE Journal of Oceanic Engineering, 2021, 46 (1): 338- 351. |
[1] | Tan GAO, Chengcai LYU, Chuan TIAN. Error control method for OFDM-MFSK underwater acoustic communication [J]. Systems Engineering and Electronics, 2022, 44(5): 1701-1708. |
[2] | Xiaoling NING, Jijin TONG, Linsen ZHANG, Yasong LUO, Han CHENG. Application of fast convergent affine projection algorithm in sparse underwater acoustic channels [J]. Systems Engineering and Electronics, 2022, 44(2): 434-439. |
[3] | Yuzhi ZHANG, Yanjing SUN, Bin WANG, Yang LIU. Underwater acoustic adaptive OFDMA based on feedback channel state information [J]. Systems Engineering and Electronics, 2021, 43(8): 2321-2331. |
[4] | Yuan LIU, Ruiqin ZHAO, Xiaohong SHEN, Haiyan WANG. Collision-free topology discovery protocol for underwater acoustic network [J]. Systems Engineering and Electronics, 2020, 42(7): 1597-1604. |
[5] | ZHOU Xiao-meng, HOU Chao-huan, YAN Jin, CHEN Peng. Approach to signal detection in doubly-spread channels based on STFT [J]. Journal of Systems Engineering and Electronics, 2009, 31(10): 2506-2509. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||