Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (3): 929-938.doi: 10.12305/j.issn.1001-506X.2022.03.25
• Guidance, Navigation and Control • Previous Articles Next Articles
Tengafei ZHANG1, Chunlin GONG1, Hua SU1,*, Pengfei XUE2
Received:
2021-06-08
Online:
2022-03-01
Published:
2022-03-10
Contact:
Hua SU
CLC Number:
Tengafei ZHANG, Chunlin GONG, Hua SU, Pengfei XUE. Trajectory optimization based on heat-augmented model and analysis of thermal protection structure[J]. Systems Engineering and Electronics, 2022, 44(3): 929-938.
1 | 张灿, 林旭斌, 刘都群, 等. 2019年国外高超声速飞行器技术发展综述[J]. 飞航导弹, 2020, (1): 16- 20. |
ZHANG C , LIN X B , LIU D Q , et al. A review of foreign hypersonic vehicle technology development in 2019[J]. Aerodynamic Missile Journal, 2020, (1): 16- 20. | |
2 | HIRSCHEL E H, CLAUS W. 高超声速飞行器气动热力学设计问题精选[M]. 唐志共等, 译. 北京: 国防工业出版社, 2013: 1-12, 89-92. |
HIRSCHEL E H, CLAUS W. Selected aerother-modynamic design problems of hypersonic flight vehicles[M]. TANG Z G, et al, Trans. Beijing: National Defense Industry Press, 2013: 1-12, 89-92. | |
3 | QU F , SUN D , ZUO G . A study of upwind schemes on the lami- nar hypersonic heating predictions for the reusable space vehicle[J]. Acta Astronautica, 2018, 147 (6): 412- 420. |
4 |
EYI S , YUMUȘAK M . Aerothermodynamic shape optimization of hypersonic blunt bodies[J]. Engineering Optimization, 2015, 47 (7): 909- 926.
doi: 10.1080/0305215X.2014.933822 |
5 | 孙勇. 基于改进Gauss伪谱法的高超声速飞行器轨迹优化与制导[D]. 哈尔滨: 哈尔滨工业大学, 2012: 4-10. |
SUN Y. Trajectory optimization and guidance of hypersonic vehicle based on improved Gauss pseudospectral method[D]. Harbin: Harbin Institute of Technology, 2012: 4-10. | |
6 |
BETTS J T . Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21 (2): 193- 207.
doi: 10.2514/2.4231 |
7 |
CONWAY B . A survey of methods available for the numerical optimization of continuous dynamic systems[J]. Journal of Optimization Theory and Applications, 2012, 152 (2): 271- 306.
doi: 10.1007/s10957-011-9918-z |
8 |
CHAI R Q , SAVVARIS A , TSOURDOS A , et al. A review of optimization techniques in spacecraft flight trajectory design[J]. Progress in Aerospace Sciences, 2019, 109, 100543.
doi: 10.1016/j.paerosci.2019.05.003 |
9 |
BENSON D A , HUNTINGTON G T , THORVALDSEN T P , et al. Direct trajectory optimization and costate estimation via an orthogonal collocation method[J]. Journal of Guidance, Control, and Dynamics, 2006, 29 (6): 1435- 1440.
doi: 10.2514/1.20478 |
10 | ROSS I M, FAHROO F. Legendre pseudospectral approximations of optimal control problems[C]//Proc. of the New Trends in Nonlinear Dynamics and Control and Their Applications, 2003: 327-342. |
11 | BANKS H T , FAKHROO F . Legendre-Tau approximations for LQR feedback control of acouustic pressure fields[J]. Journal of Mathematical Systems Estimation Control, 1995, 5 (2): 271- 274. |
12 |
REDDIEN G W . Collocation at gauss points as a discretization in optimal control[J]. SIAM Journal on Control and Optimization, 1979, 17 (2): 298- 306.
doi: 10.1137/0317023 |
13 |
ZHANG Y , CHEN J , SHEN L C . Hybrid hierarchical trajectory planning for a fixed-wing UCAV performing air-to-surface multi-target attack[J]. Journal of Systems Engineering and Electronics, 2012, 23 (4): 536- 552.
doi: 10.1109/JSEE.2012.00068 |
14 |
WANG Z , WU Z . Six-DOF trajectory optimization for reusable launch vehicles via Gauss pseudospectral method[J]. Journal of Systems Engineering and Electronics, 2016, 27 (2): 434- 441.
doi: 10.1109/JSEE.2016.00044 |
15 |
WANG L , XING Q H , MAO Y F . Reentry trajectory rapid optimization for hypersonic vehicle satisfying waypoint and no-fly zone constraints[J]. Journal of Systems Engineering and Electronics, 2015, 26 (6): 1277- 1290.
doi: 10.1109/JSEE.2015.00140 |
16 |
ZHOU J , SHAO L , WANG H J , et al. Optimal midcourse trajectory planning considering the capture region[J]. Journal of Systems Engineering and Electronics, 2018, 29 (3): 587- 600.
doi: 10.21629/JSEE.2018.03.16 |
17 |
TIAN B L , FAN W R . Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase[J]. IEEE Trans.on Industrial Electronics, 2015, 62 (3): 1639- 1650.
doi: 10.1109/TIE.2014.2341553 |
18 | SAGLIANO M , MOOIJ E , THEIL S . Onboard trajectory gene- ration for entry vehicles via adaptive multivariate pseudospectral interpolation[J]. Journal of Guidance, Control, and Dynamics, 2016, 40 (2): 466- 476. |
19 |
LIU X F , SHEN Z J . Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (2): 227- 241.
doi: 10.2514/1.G001210 |
20 |
LU P , XUE S B . Rapid generation of accurate entry landing footprints[J]. Journal of Guidance, Control, and Dynamics, 2010, 33 (3): 756- 767.
doi: 10.2514/1.46833 |
21 |
RIZVI S T I , HE L S , XU D J . Optimal trajectory and heat load analysis of different shape lifting reentry vehicles for me-dium range application[J]. Defence Technology, 2015, 11 (4): 350- 361.
doi: 10.1016/j.dt.2015.06.003 |
22 | ISTRATIE V. Optimal skip entry into atmosphere with minimum heat[C]//Proc. of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2003. |
23 | TU L H, YUAN J P, FANG Q, et al. Reentry skipping tra- jectory optimization using direct parameter optimization method[C]// Proc. of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, 2006. |
24 | WANG W K, HOU Z X, LIU D N, et al. Heat-augmented trajectory optimization of hypersonic cruise vehicle[C]//Proc. of the 21st AIAA International Space Planes and Hypersonics Technologies Conference, 2017. |
25 |
WANG W K , HOU Z X , LIU D N , et al. Periodically cruising hypersonic vehicle with active cooling: an optimal-control based design approach[J]. IEEE Access, 2019, 7, 65486- 65505.
doi: 10.1109/ACCESS.2019.2918848 |
26 | 赵汉元. 飞行器再入动力学和制导[M]. 长沙: 国防科技大学出版社, 1997: 74- 87. |
ZHAO H Y . Reentry dynamics and guidance[M]. Changsha: Press of National University of Defense Technology, 1997: 74- 87. | |
27 | 刘双. 高超声速飞行器热防护系统主动冷却机制与效能评估[D]. 哈尔滨: 哈尔滨工业大学, 2010: 28-33. |
LIU S. Active cooling mechanism and cooling capacity evaluation of thermal protection systems for hypersonic vehicle[D]. Harbin: Harbin Institute of Technology, 2010: 28-33. | |
28 |
LIU X S , FU Q G , ZHANG J P , et al. Design of a novel all-carbon multi-layer structure with excellent thermal protection performance based on carbon/carbon composites and carbon foam[J]. Ceramics International, 2020, 46 (18, Part A): 28887- 28893.
doi: 10.1016/j.ceramint.2020.08.056 |
29 |
BLOSSER M L . Fundamental modeling and thermal perfor- mance issues for metallic thermal protection system concept[J]. Journal of Spacecraft and Rockets, 2004, 41 (2): 195- 206.
doi: 10.2514/1.9182 |
30 | MYERS D E, MARTIN C J, BLOSSER M L. Parametric weight comparison of advanced metallic, ceramic tile, and ceramic blanket thermal protection systems. [R]. NASA Center for Aerospace Information, 2000: 1-46. |
31 | PHILLIPS T H, CORPORATION S. A common aero vehicle (CAV) model, description, and employment guide[EB/OL]. [2021-06-01]. https://www.doc88.com/p-501932383682.html. |
[1] | Guan WANG, Haizhong RU, Dali ZHANG, Guangcheng MA, Hongwei XIA. Design of intelligent control system for flexible hypersonic vehicle [J]. Systems Engineering and Electronics, 2022, 44(7): 2276-2285. |
[2] | Haoran SHI, Faxing LU, Jiangxin QI, Guang YANG. Cooperative target tracking of UAVs based on aided beacon [J]. Systems Engineering and Electronics, 2022, 44(7): 2302-2310. |
[3] | Yajie XU, Yong XIAN, Bangjie LI, Leliang REN, Shaopeng LI, Weilin GUO. Method for improving the precision of hypersonic vehicle inertial navigation system based on neural network [J]. Systems Engineering and Electronics, 2022, 44(4): 1301-1309. |
[4] | Junbao WEI, Haiyan LI, Jing LI. Novel backstepping control for hypersonic vehicle with angle of attack constraint [J]. Systems Engineering and Electronics, 2022, 44(4): 1310-1317. |
[5] | Tong AN, Peng WANG, Jianhua WANG, Guojian TANG, Yulong PAN, Haishan CHEN. Integrated guidance and control schemes for dynamic surface of flexible hypersonic vehicles [J]. Systems Engineering and Electronics, 2022, 44(3): 956-966. |
[6] | Junbiao ZHANG, Jiajun XIONG, Xuhui LAN, Fan LI, Wenjian LIU, Qiushi XI. 3D tracking algorithm of hypersonic gliding target based on adaptive filtering [J]. Systems Engineering and Electronics, 2022, 44(2): 628-636. |
[7] | Caihong YUE, Shengjing TANG, Jie GUO, Xiao WANG, Haoqiang ZHANG. Reentry trajectory rapid optimization for hypersonic telescopic deformable vehicle [J]. Systems Engineering and Electronics, 2021, 43(8): 2232-2243. |
[8] | Jianguo GUO, Yalu SU. Control system design of adaptive dynamic programming for hypersonic vehicle [J]. Systems Engineering and Electronics, 2021, 43(6): 1628-1635. |
[9] | Mingming TIAN, Guisheng LIAO, Yunpeng LI, Shengqi ZHU. Clutter properties and suppression method of hypersonic platform radar [J]. Systems Engineering and Electronics, 2020, 42(2): 301-308. |
[10] | Yan ZHAO, Jianfeng WU, Yupeng GAO. Information fusion method of hypersonic vehicle based on multi-agent navigation [J]. Systems Engineering and Electronics, 2020, 42(2): 405-413. |
[11] | Cheng WANG, Xugang WANG. Terminal sliding mode control for hypersonic guided projectile [J]. Systems Engineering and Electronics, 2020, 42(12): 2859-2866. |
[12] | Liqiang NIU, Xiangning ZHONG, Peiyu WU, Yongjun XIE. Design and implementation of tunable antenna on the hypersonic velocity aircraft [J]. Systems Engineering and Electronics, 2020, 42(10): 2149-2155. |
[13] | Shijie LI, Humin LEI, Chijun ZHOU, Tao ZHANG. Trajectory prediction algorithm for hypersonic reentry gliding target based on control variables estimation [J]. Systems Engineering and Electronics, 2020, 42(10): 2320-2327. |
[14] | Gaoyue WANG, Huijun ZHANG, Xian CHEN, Hao LI. Prediction method of spacecraft flight capability in atmospheric entry phase based on Gaussian process regression [J]. Systems Engineering and Electronics, 2020, 42(10): 2334-2339. |
[15] | PAN Meimei, CAO Yunhe, WANG Yu, WU Wenhua. Variable structure interactive multi-model tracking algorithm based on maneuvering discriminant [J]. Systems Engineering and Electronics, 2019, 41(4): 730-736. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||