Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (3): 921-928.doi: 10.12305/j.issn.1001-506X.2022.03.24
• Systems Engineering • Previous Articles Next Articles
Xiangyang LIN*, Qinghua XING, Fuxian LIU
Received:
2020-10-22
Online:
2022-03-01
Published:
2022-03-10
Contact:
Xiangyang LIN
CLC Number:
Xiangyang LIN, Qinghua XING, Fuxian LIU. Research on optimization of combat force for key air defense model[J]. Systems Engineering and Electronics, 2022, 44(3): 921-928.
1 |
赵鹏蛟, 李建国. 基于排队论的防空兵力部署优化模型[J]. 火力与指挥控制, 2017, 42 (11): 38- 42.
doi: 10.3969/j.issn.1002-0640.2017.11.09 |
ZHAO P J , LI J G . An optimization model for air defense troops deployment based on queuing theory[J]. Fire Control and Command Control, 2017, 42 (11): 38- 42.
doi: 10.3969/j.issn.1002-0640.2017.11.09 |
|
2 | 徐佳龙. 基于决策论的地面防空兵力部署方法[J]. 指挥信息系统与技术, 2017, 8 (6): 99- 104. |
XU J L . Force deployment method for land-based air defense based on decision theory[J]. Command Information System and Technology, 2017, 8 (6): 99- 104. | |
3 |
潘泽东, 刘付显. 基于蚁群算法的战场兵力机动优化仿真[J]. 计算机仿真, 2018, 35 (5): 27- 30.
doi: 10.3969/j.issn.1006-9348.2018.05.006 |
PAN Z D , LIU F X . Simulation of optimization for force maneuver in battlefield based on ant colony algorithm[J]. Computer Simulation, 2018, 35 (5): 27- 30.
doi: 10.3969/j.issn.1006-9348.2018.05.006 |
|
4 |
申卯兴, 刘春波, 刘建仓, 等. 基于多目标模糊决策的兵力分配模型[J]. 西安工程科技学院学报, 2005, (2): 166- 168.
doi: 10.3969/j.issn.1674-649X.2005.02.009 |
SHEN M X , LIU C B , LIU J C , et al. A model of force assignment with fuzzy multi-objective decision making[J]. Journal of Xi’an University of Engineering Science and Technology, 2005, (2): 166- 168.
doi: 10.3969/j.issn.1674-649X.2005.02.009 |
|
5 |
赵鹏蛟, 李建国, 李红霞, 等. 基于Memetic算法的要地防空兵力机动部署优化方法[J]. 火力与指挥控制, 2018, 43 (9): 25- 29.
doi: 10.3969/j.issn.1002-0640.2018.09.006 |
ZHAO P J , LI J G , LI H X , et al. Optimization of troops maneuver deployment for key-point air defense based on Memetic algorithm[J]. Fire Control and Command Control, 2018, 43 (9): 25- 29.
doi: 10.3969/j.issn.1002-0640.2018.09.006 |
|
6 |
李菱歌, 丁轶. 一种基于改进遗传算法的防空兵力优化分配[J]. 电子质量, 2019, (11): 5- 8.
doi: 10.3969/j.issn.1003-0107.2019.11.002 |
LI L G , DING Y . An optimal allocation of air defense force based on improved genetic algorithm[J]. Electronics Quality, 2019, (11): 5- 8.
doi: 10.3969/j.issn.1003-0107.2019.11.002 |
|
7 |
王君, 娄寿春, 陈绍顺. 基于遗传算法的兵力分配模型[J]. 系统工程, 2001, (6): 89- 93.
doi: 10.3969/j.issn.1001-4098.2001.06.016 |
WANG J , LOU S C , CHEN S S . Arms apportion model based on GA[J]. Systems Engineering, 2001, (6): 89- 93.
doi: 10.3969/j.issn.1001-4098.2001.06.016 |
|
8 |
刘铭, 李为民, 王颖龙, 等. 基于遗传算法的区域防空部署优化研究[J]. 系统工程与电子技术, 2003, 25 (2): 191- 193.
doi: 10.3321/j.issn:1001-506X.2003.02.018 |
LIU M , LI W M , WANG Y L , et al. Optimization of the regional air defense disposition based on genetic algorithms[J]. Systems Engineering and Electronics, 2003, 25 (2): 191- 193.
doi: 10.3321/j.issn:1001-506X.2003.02.018 |
|
9 |
刘宁, 张福利, 贾岩. 防空兵群兵力分配的动态规划[J]. 兵工自动化, 2007, 26 (3): 13- 14.
doi: 10.3969/j.issn.1006-1576.2007.03.007 |
LIU N , ZHANG F L , JIA Y . Dynamic programming of air defense troops assignments[J]. Ordnance Industry Automation, 2007, 26 (3): 13- 14.
doi: 10.3969/j.issn.1006-1576.2007.03.007 |
|
10 |
刘立佳, 李相民, 颜骥. 基于高维多目标多约束分组优化的要地防空扇形优化部署[J]. 系统工程与电子技术, 2013, 35 (12): 2513- 2520.
doi: 10.3969/j.issn.1001-506X.2013.12.12 |
LIU L J , LI X M , YAN J . Key-point air defense fan-shaped deployment with large-dimensional multi-objective multi-constraint group divided optimization[J]. Systems Engineering and Electronics, 2013, 35 (12): 2513- 2520.
doi: 10.3969/j.issn.1001-506X.2013.12.12 |
|
11 | 雷宇曜, 姜文志, 刘立佳, 等. 基于子目标进化算法的要地防空武器系统优化部署[J]. 系统工程与电子技术, 2016, 38 (2): 314- 322. |
LEI Y Y , JIANG W Z , LIU L J , et al. Weapon system deployment optimization based on a sub-objective evolutionary algorithm for key-point air defense[J]. Systems Engineering and Electronics, 2016, 38 (2): 314- 322. | |
12 |
刘志成, 严建钢. 基于图论的防空兵力优化配置研究[J]. 大学数学, 2013, 29 (1): 52- 55.
doi: 10.3969/j.issn.1672-1454.2013.01.013 |
LIU Z C , YAN J G . Optimization of the air defense forces disposition based on the graph theory[J]. College Mathematics, 2013, 29 (1): 52- 55.
doi: 10.3969/j.issn.1672-1454.2013.01.013 |
|
13 | 孔祥宇. 粒子群算法求解区域防空兵力部署纳什均衡策略的研究[D]. 武汉: 华中科技大学, 2016. |
KONG X Y. Research on solving Nash equilibrium strategies for region air-defense force deployment based on particle swarm optimization[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
14 | 粘松雷, 严建钢, 刘志成. 防空兵力部署优化模型仿真研究[J]. 微计算机信息, 2012, 28 (4): 15- 16. |
ZHAN S L , YAN J G , LIU Z C . Research on the model simulation of air defence military strength deployment optimization[J]. Control & Automation, 2012, 28 (4): 15- 16. | |
15 |
张镭, 艾华. 多种防空武器系统协同作战时要地生存概率的数学模型[J]. 中国新通信, 2015, 17 (14): 8- 9.
doi: 10.3969/j.issn.1673-4866.2015.14.005 |
ZHANG L , AI H . A mathematical model for survival probability of multiple air defense weapon systems in cooperative operation[J]. China New Telecommunications, 2015, 17 (14): 8- 9.
doi: 10.3969/j.issn.1673-4866.2015.14.005 |
|
16 |
乔熔岩, 赵新国. 要地防空作战兵力部署模型研究[J]. 军事运筹与系统工程, 2014, 28 (4): 28- 31.
doi: 10.3969/j.issn.1672-8211.2014.04.005 |
QIAO R Y , ZHAO X G . Study on the model of air defense combat force deployment in key areas[J]. Military Operations Research and Systems Engineering, 2014, 28 (4): 28- 31.
doi: 10.3969/j.issn.1672-8211.2014.04.005 |
|
17 |
邢清华, 刘付显. 区域防空部署优化系统建模[J]. 系统工程与电子技术, 2006, 28 (5): 712- 715.
doi: 10.3321/j.issn:1001-506X.2006.05.020 |
XING Q H , LIU F X . Modeling on area air defense optimization deployment system[J]. Systems Engineering and Electro-nics, 2006, 28 (5): 712- 715.
doi: 10.3321/j.issn:1001-506X.2006.05.020 |
|
18 | 周源, 燕军, 孙媛, 等. 基于贝叶斯网络的要地防空目标威胁评估模型[J]. 海军航空工程学院学报, 2015, 30 (5): 467- 472. |
ZHOU Y , YAN J , SUN Y , et al. Target threat evaluation model for important place air defense based on Bayesian network[J]. Journal of Naval Aeronautical and Astronautical University, 2015, 30 (5): 467- 472. | |
19 | 罗宇. 防空导弹武器系统效能评估研究[D]. 西安: 西北工业大学, 2016. |
LUO Y. Air defense missile weapon system effectiveness evalua- tion research[D]. Xi’an: Northwestern Polytechnical University, 2016. | |
20 |
姜进晶, 汪民乐, 姜斌. 无人机协同下远程火箭炮作战能力评估[J]. 火力与指挥控制, 2020, 45 (7): 120- 125.
doi: 10.3969/j.issn.1002-0640.2020.07.022 |
JIANG J J , WANG M L , JIANG B . Operational capability assessment of long-range rocket gun with UAV cooperation[J]. Fire Control and Command Control, 2020, 45 (7): 120- 125.
doi: 10.3969/j.issn.1002-0640.2020.07.022 |
|
21 | 宋贵宝, 宋佳明, 周荣基. 基于作战环-可拓云模型的反舰导弹装备体系作战效能评估[J]. 兵工自动化, 2020, 39 (8): 4- 9. |
SONG G B , SONG J M , ZHOU R J . Operational effectiveness evaluation of anti-ship missile equipment system based on combat ring-extension cloud model[J]. Ordnance Industry Automation, 2020, 39 (8): 4- 9. | |
22 | 董文洪, 高宇, 王艳娜. 基于改进对数法的飞机对地攻击效能评估[J]. 舰船电子工程, 2020, 40 (7): 137- 139. |
DONG W H , GAO Y , WANG Y N . Effectiveness evaluation of aircraft attacking ground targets based on improved loga-rithm method[J]. Ship Electronic Engineering, 2020, 40 (7): 137- 139. | |
23 | 韩月明, 方丹, 张红艳, 等. 智能无人机集群协同作战效能评估综述[J]. 飞航导弹, 2020, (8): 51- 56. |
HAN Y M , FANG D , ZHANG H Y , et al. A review on the eva-luation of cooperative combat effectiveness of intelligent UAV clusters[J]. Aerodynamic Missile Journal, 2020, (8): 51- 56. | |
24 |
金宏鹏, 谷亚辉. 基于贝叶斯反馈云模型的陆军防空兵作战能力评估研究[J]. 价值工程, 2020, 39 (15): 216- 220.
doi: 10.3969/j.issn.1006-4311.2020.15.095 |
JIN H P , GU Y H . Research on combat capability evaluation of air defense forces based on Bayesian feedback cloud model[J]. Value Engineering, 2020, 39 (15): 216- 220.
doi: 10.3969/j.issn.1006-4311.2020.15.095 |
|
25 | 朱学耕, 王强, 刘家路, 等. 基于三角模糊VIKOR的合成营动态作战能力评估[J]. 火力与指挥控制, 2020, 45 (8): 143- 148. |
ZHU X G , WANG Q , LIU J L , et al. Dynamic operational capability assessment of combined battalion based on VIKOR method and triangular fuzzy[J]. Fire Control and Command Control, 2020, 45 (8): 143- 148. | |
26 | 周立尧, 刘小方, 马鹏, 等. 基于语言信息集结算子的导弹部队作战单元指挥能力评估[J]. 指挥控制与仿真, 2020, 42 (4): 61- 65. |
ZHOU L Y , LIU X F , MA P , et al. Command capability evaluation of missile unit based on linguistic information aggregation ope-rator[J]. Command Control and Simulation, 2020, 42 (4): 61- 65. | |
27 | FAUSKEM F . Optimizing the troops-to-tasks problem in military operations planning[J]. Military Operations Research, 2015, 20 (4): 49- 57. |
28 | MIKA M , WALIGÓRA G , WEGLARZ J . Tabu search for multi-mode resource-constrained project scheduling with sche-dule- dependent setup times[J]. European Journal of Operational Research, 2006, 187 (3): 1238- 1250. |
29 | WOMER H K . A decomposition approach for shipboard manpower scheduling[J]. Military Operations Research, 2009, 14 (3): 67- 90. |
30 |
ERLANDSSON T , NIKLASSON L . Automatic evaluation of air mission routes with respect to combat survival[J]. Information Fusion, 2014, 20, 88- 98.
doi: 10.1016/j.inffus.2013.12.001 |
[1] | Tianye SUN, Wei SUN, Jianjun WU. UAV formation rapid assembly method based on improved Quatre algorithm [J]. Systems Engineering and Electronics, 2022, 44(9): 2840-2848. |
[2] | Jing YU, Enmi YONG, Hanyang CHEN, Dong HAO, Xiancai ZHANG. Bi-level mission planning method for multi-cooperative UAV air-to-ground attack [J]. Systems Engineering and Electronics, 2022, 44(9): 2849-2857. |
[3] | Yong ZHANG, Changjiu LI, Xichao SU, Rongwei CUI. Maintenance task scheduling of carrier-based aircraft fleet in hangar based on HTLBO algorithm [J]. Systems Engineering and Electronics, 2022, 44(9): 2858-2868. |
[4] | Jianfeng YANG, Heye XIAO, Liang LI, Junqiang BAI, Weihao DONG. Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism [J]. Systems Engineering and Electronics, 2022, 44(8): 2530-2539. |
[5] | Junlong LI, Songzhou LI, Di ZHOU. Optimization method for three-impulse rendezvous under multi-constraints [J]. Systems Engineering and Electronics, 2022, 44(8): 2612-2620. |
[6] | Lu ZHUANG, Zhong LU, Haijing SONG, Jia ZHOU. An optimization method for development assurance level assignment of airborne system [J]. Systems Engineering and Electronics, 2022, 44(8): 2688-2698. |
[7] | Shiying YAN, Kefei YAN, Wei FANG, Hengyang LU. Large-scale multi-objective algorithm based on neighborhood adaptive of differential evolution [J]. Systems Engineering and Electronics, 2022, 44(7): 2112-2124. |
[8] | Shunqi HUAN, Zhemei FAN, Jianbo WANG. System-of-systems effectiveness evaluation method based on functional dependency network [J]. Systems Engineering and Electronics, 2022, 44(7): 2191-2200. |
[9] | Qian LIU, Yunjun LU, Kebin CHEN, Mengyao HAN, Liang GUO. Combat task decomposition EVA method based on binary constraints of task subject [J]. Systems Engineering and Electronics, 2022, 44(7): 2201-2210. |
[10] | Andi TANG, Tong HAN, Dengwu XU, Huan ZHOU, lei XIE. An improved salp swarm algorithm using Gaussian distribution estimation strategy [J]. Systems Engineering and Electronics, 2022, 44(7): 2229-2240. |
[11] | Haoran SHI, Faxing LU, Jiangxin QI, Guang YANG. Cooperative target tracking of UAVs based on aided beacon [J]. Systems Engineering and Electronics, 2022, 44(7): 2302-2310. |
[12] | Lingyu MENG, Bingli GUO, Wen YANG, Xinwei ZHANG, Zuoqing ZHAO, Shanguo HUANG. Network routing optimization approach based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(7): 2311-2318. |
[13] | Minghui GAI, Su ZHANG, Weitian SUN, Yude NI, Lei YANG. Structural-feature enhancement of SAR targets based on complex value compatible total variation [J]. Systems Engineering and Electronics, 2022, 44(6): 1862-1872. |
[14] | Jiang JIANG, Qiancheng JIN, Xueming XU, Shuai HOU, Jichao LI. Preliminary study on national defense science and technology system engineering in the era of intelligence [J]. Systems Engineering and Electronics, 2022, 44(6): 1880-1888. |
[15] | Jianlei ZHAO, Haiyang LI. Maneuvering identification method of non-cooperative aircraft based onsparse orbit information [J]. Systems Engineering and Electronics, 2022, 44(6): 1950-1956. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||