系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (3): 831-838.doi: 10.12305/j.issn.1001-506X.2023.03.25

• 制导、导航与控制 • 上一篇    下一篇

基于长短期记忆神经网络的自适应容错方法

沈子涵1, 赵修斌1,*, 张闯2, 张良1, 刘鑫贤1   

  1. 1. 空军工程大学信息与导航学院, 陕西 西安 710077
    2. 中国人民解放军95510部队, 贵州 贵阳 550029
  • 收稿日期:2022-02-23 出版日期:2023-02-25 发布日期:2023-03-09
  • 通讯作者: 赵修斌
  • 作者简介:沈子涵(1998—), 男, 硕士研究生, 主要研究方向为GNSS完好性检测技术
    赵修斌(1965—), 男, 教授, 博士, 主要研究方向为现代航空导航定位理论与技术
    张闯(1992—), 男, 工程师,博士, 主要研究方向为组合导航容错技术
    张良(1988—), 男, 副教授, 博士, 主要研究方向为卫星导航高精度定位
    刘鑫贤(1998—), 男, 硕士研究生, 主要研究方向为组合导航的无人机应用
  • 基金资助:
    国家自然科学基金(41904014)

Adaptive fault-tolerant method based on long-short term memory neural network

Zihan SHEN1, Xiubin ZHAO1,*, Chuang ZHANG2, Liang ZHANG1, Xinxian LIU1   

  1. 1. Information and Navigation College, Air Force Engineering University, Xi'an 710077, China
    2. Unit 95510 of the PLA, Guiyang 550029, China
  • Received:2022-02-23 Online:2023-02-25 Published:2023-03-09
  • Contact: Xiubin ZHAO

摘要:

针对传统的全球导航卫星系统/惯性导航系统(global navigation satellite system/inertial navigation system, GNSS/INS)紧组合系统容错方法对故障处理方式单一、环境适应性差的问题, 提出了一种基于长短期记忆神经网络的自适应故障容错方法。该方法基于长短期记忆神经网络建立GNSS伪距、伪距率预测模型。发生故障时, 通过分量检测法定位故障观测的维度, 并引入相对差分定位精度分析故障观测对系统定位精度的影响, 从而实现隔离与重构策略的动态选择。利用实测数据从可见星数、几何构型、故障持续时间3个角度设置多组环境进行仿真实验。仿真结果表明, 所提方法对复杂环境具有更好的适应能力, 可有效降低故障存续期间系统的定位误差, 提高系统的故障检测性能。

关键词: 全球导航卫星系统/惯性导航系统紧组合, 容错, 长短期记忆神经网络, 定位精度, 故障检测

Abstract:

Aiming at the problem that the traditional fault-tolerant method of tightly coupled global navigation satellite system/inertial navigation system (GNSS/INS) is insufficient to adapt to the environment and to solve the fault, an adaptive fault-tolerant method based on long-term and short-term memory neural network is proposed. In this method, GNSS pseudo-range and pseudo-range rate prediction models were established based on long and short-term memory neural network. When a fault occurs, the dimension of the fault observation is located by the component detection method, and the relative differential precision of positioning is introduced to analyze the impact of the fault observation on the positioning accuracy of the system and to realize the dynamic selection of the isolation and reconfiguration strategy. Utilizing the actual measurement data, simulation experiments are conducted by setting up multiple environments from three perspectives: number of visible stars, geometric configuration, and fault duration. The simulation results show that the proposed method has better adaptability to complex environments, and can effectively reduce the localization error of the system during faults existing period and improve the fault detection performance of the system.

Key words: tightly coupled global navigation satellite system/inertial navigation system(GNSS/INS), fault-tolerant, long-short term memory (LSTM) neural network, positioning accuracy, fault detection

中图分类号: