系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (9): 2785-2796.doi: 10.12305/j.issn.1001-506X.2025.09.02

• 电子技术 • 上一篇    

基于自适应小波分解和轻量化网络架构的特定辐射源识别算法

石文强(), 雷迎科, 金虎, 滕飞()   

  1. 国防科技大学电子对抗学院,安徽 合肥 230000
  • 收稿日期:2024-05-30 出版日期:2025-09-25 发布日期:2025-09-16
  • 通讯作者: 滕飞 E-mail:17371050626@163.com;s505_tf@126.com
  • 作者简介:石文强(2000—),男,硕士研究生,主要研究方向为辐射源个体识别、神经网络优化
    雷迎科(1975—),男,教授,博士,主要研究方向为智能通信对抗、信号处理
    金 虎(1974—),男,教授,博士,主要研究方向为通信对抗、智能干扰
  • 基金资助:
    国家自然科学基金(62071479)资助课题

Algorithm for specific emitter identification based on adaptive wavelet decomposition and lightweight network architecture

Wenqiang SHI(), Yingke LEI, Hu JIN, Fei TENG()   

  1. College of Electronics Engineering,National University of Defense and Technology,Hefei 230000
  • Received:2024-05-30 Online:2025-09-25 Published:2025-09-16
  • Contact: Fei TENG E-mail:17371050626@163.com;s505_tf@126.com

摘要:

针对特定辐射源识别(specific emitter identification,SEI)算法在复杂多变的电磁环境中识别率低的问题,提出一种基于自适应小波分解和轻量化网络架构的SEI算法。首先,设计自适应小波分解的预处理方法,确定每个信号样本的最优小波系数。然后,设计特征拼接算法综合所有信号样本的最优系数,构建辐射源个体的特征表示。最后,设计一种轻量高效的网络模型,引入倒置残差模块和多头注意力机制,提取更具可分性的细微特征。在3种不同数据集上识别率分别为99.6%、99.31%和98.8%,该结果表明所提算法相较于其他识别算法有着更高的识别率。在高斯白噪声和典型多径衰落信道环境中,所提算法仍可以进行有效识别,展现出优异的鲁棒性。

关键词: 特定辐射源识别, 小波变换, 神经网络

Abstract:

To address the issue of low recognition rates of specific emitter identification (SEI) algorithms in complex and dynamic electromagnetic environments, a SEI algorithm based on adaptive wavelet decomposition and lightweight network architecture is proposed. Initially, a preprocessing method of adaptive wavelet decomposition is designed to determine the optimal wavelet coefficients for each signal sample. Subsequently, a feature concatenation algorithm is devised to integrate the optimal coefficients of all signal samples, forming the feature representation of the emitter individual. Finally, a lightweight and efficient network model is destgned, integrating inverted residual modules and a multi-head attention mechanism to extract more discriminative fine-grained features. The recognition rates on three different datasets are 99.6%, 99.31%, and 98.8%, respectively, indicating that the proposed algorithm has a higher recognition rate compared to other recognition algorithms.The proposed algorithm exhibits remarkable robustness, maintaining effective identification performance in the presence of Gaussian white noise and typical multipath fading channel environments.

Key words: specific emitter identification (SEI), wavelet transform, neural network

中图分类号: