1 |
MATTHEW D Z, ROB F. Visualizing and understanding convolutional networks[C]// Proc. of the 14th European Conference on Computer Vision, 2014: 818−833.
|
2 |
WONG L J, HEADLRY W C, MICHAELS A J. Specific emitter identification using convolutional neural network-based IQ imbalance estimators[J]. IEEE Access, 2019, 7, 33544- 33555.
|
3 |
WU Q Y, FERES C, KUZMENKO D, et al. Deep learning based RF fingerprinting for device identification and wireless security[J]. Electronics Letters, 2018, 54 (24): 1405- 1407.
|
4 |
KONG M X, ZHANG J, LIU W F, et al. Radar emitter identification based on deep convolutional neural network[C]// Proc. of the International Conference on Control, 2018: 309−314.
|
5 |
何遵文, 侯帅, 张万成, 等. 通信特定辐射源识别的多特征融合方法[J]. 通信学报, 2021, 42 (2): 104- 112.
|
|
HE Z W, HOU S, ZHANG W C, et al. Multi-feature fusion classification method for communication specific emitter identification[J]. Journal on Communications, 2021, 42 (2): 104- 112.
|
6 |
韩洁, 张涛, 王欢欢, 等. 基于3D-Hibert能量谱和多尺度分形特征的通信辐射源个体识别[J]. 通信学报, 2017, 38 (4): 99- 109.
doi: 10.11959/j.issn.1000-436x.2017080
|
|
HAN J, ZHANG T, WANG H H, et al. Communication emitter individual identification based on 3D-Hibert energy spectrum and multi-scale fractal features[J]. Journal on Communications, 2017, 38 (4): 99- 109.
doi: 10.11959/j.issn.1000-436x.2017080
|
7 |
YUAN Y J, HUANG Z T, WU H, et al. Specific emitter identification based on Hilbert-Huang transform based time-frequency-energy distribution features[J]. IET Communications, 2014, 8 (13): 2404- 2412.
|
8 |
ZHANG J W, WANG F G, DOBRE O A, et al. Specific emitter identification via Hilbert–Huang transform in single-hop and relaying scenarios[J]. IEEE Trans. on Information Forensics and Security, 2016, 11 (6): 1192- 1205.
|
9 |
SATIJA U, TRIVEDI G, BISWAL G, et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Trans. on Information Forensics and Security, 2019, 14 (3): 581- 591.
|
10 |
GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[J]. Journal of Machine Learning Research, 2010, 9, 249- 256.
|
11 |
XIN Q, HU S H, LIU S Q, et al. An attention-based wavelet convolution neural network for epilepsy EEG classification[J]. IEEE Trans. on Neural Systems and Rehabilitation Engineering, 2022, 30, 957- 966.
|
12 |
BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Trans. on Neural Networks, 1994, 5 (2): 157- 166.
|
13 |
ZHOU Y P, WANG C Y, ZHOU R, et al. A specific emitter identification method based on RF-DNA and XGBoost[C]// Proc. of the 7th International Conference on Intelligent Computing and Signal Processing, 2022: 1530−1533.
|
14 |
MUHAMMAD U Z, MUHAMMAD D N, MAQSOOD H S, et al. Specific emitter identification based on multi-scale multi-dimensional approximate entropy[J]. IEEE Signal Processing Letters, 2024, 31, 850- 854.
|
15 |
SERGEY I, CHRISTIAN S. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proc. of the International Conference on Machine Learning, 2015: 448−456.
|
16 |
HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]// Proc. of the 14th European Conference on Computer Vision, 2016: 630−645.
|
17 |
TANG J X, DENG C W, HUANG G B, et al. Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine[J]. IEEE Trans. on Geoscience and Remote Sensing, 2015, 53 (3): 1174- 1185.
|
18 |
YAN G L, CAI Z X, LIU Y C, et al. Intelligent specific emitter identification using complex-valued convolutional neural network[C]// Proc. of the 23rd IEEE International Conference on Communication Technology, 2023: 1259−1263.
|
19 |
PAN J F, GUO L Q, CHEN Q J, et al. Specific radar emitter identification using 1D-CBAM-ResNet[C]// Proc. of the 14th IEEE International Conference on Wireless Communications and Signal Processing, 2022: 483−488.
|
20 |
ZHANG Y B, ZHANG Q Y, ZHAO H T, et al. Multisource heterogeneous specific emitter identification using attention mechanism-based RFF fusion method[J]. IEEE Trans. on Information Forensics and Security, 2024, 19, 2639- 2650.
|
21 |
PENG Y, ZHAO X L, GUO L T, et al. Enhanced specific emitter identification with limited data through dual implicit regularization[J]. IEEE Internet of Things Journal, 2024, 15 (11): 26395- 26405.
|
22 |
XU Z W, HAN G J, LIU L, et al. A lightweight specific emitter identification model for IIoT devices based on adaptive broad learning[J]. IEEE Trans. on Industrial Informatics, 2023, 19 (5): 7066- 7075.
|
23 |
XIE C X, ZHANG L M, ZHONG Z G. Few-shot unsupervised specific emitter identification based on density peak clustering algorithm and meta-learning[J], IEEE Sensors Journal, 2022, 22(18): 18008−18120.
|
24 |
TONG L, FANG M Q, XU Y L, et al. Specific emitter identification based on multichannel depth feature fusion[J]. Wireless Communications and Mobile Computing, 2022, 1, 9342085.
|
25 |
MARK S, ANDREW H, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4510−4520.
|
26 |
ASHISH V, NOAM S, NIKI P, et al. Attention is all you need[EB/OL]. [2024-04-30]. http://arxiv.org/abs/1706.03762.
|
27 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the Conference on Computer Vision and Pattern Recognition, 2016.
|
28 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[C]//Proc. of the International Conference on Learning Representations, 2021.
|
29 |
DIKSHIT C, ANUPAM Y, FERRANTE N. A multi-agent optimization algorithm and its application to training multilayer perceptron models[J]. Evolving System, 2024, 15 (3): 849- 879.
|
30 |
SANKHE K, BELGIOVINE M, ZHOU F, et al. ORACLE: optimized radio classification through convolutional neural networks[C]// Proc. of the IEEE International Conference on Computer Communications, 2019: 370−378.
|
31 |
AMANI A S, FRANCESCO R, SALVATORE D, et al. Exposing the fingerprint: dissecting the impact of the wireless channel on radio fingerprinting[C]// Proc. of the IEEE INFOCOM, 2020: 646−655.
|