系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (8): 2429-2443.doi: 10.12305/j.issn.1001-506X.2025.08.02
• 电子技术 • 上一篇
陈凯柏1(), 高博1,*(
), 高敏2, 余道杰1, 周晓东3, 宋燕燕1, 王越1
收稿日期:
2024-09-10
出版日期:
2025-08-25
发布日期:
2025-09-04
通讯作者:
高博
E-mail:ckbguessg@163.com;xd_gaobo@163.com
作者简介:
陈凯柏(1996—),男,讲师,博士,主要研究方向为高功率微波效应基金资助:
Kaibai CHEN1(), Bo GAO1,*(
), Min GAO2, Daojie YU1, Xiaodong ZHOU3, Yanyan SONG1, Yue WANG1
Received:
2024-09-10
Online:
2025-08-25
Published:
2025-09-04
Contact:
Bo GAO
E-mail:ckbguessg@163.com;xd_gaobo@163.com
摘要:
开展电子系统高功率微波(high-power microwave, HPM)效应研究对信息化战争意义重大。本文基于HPM技术发展历程,首先介绍了电子系统面临的HPM威胁。其次,阐述了电子系统HPM效应研究的主要问题,分析了解析法、数值法和试验法的研究现状。最后,探讨了效应研究的下一步发展趋势。当前,针对复杂电子系统开展HPM效应研究仍面临算法和模型优化、数据精确测量等现实问题。传统理论分析方法可与人工智能技术有机融合,提高计算精度和效率。在大模型技术的驱动下,HPM效应评估技术将进一步发展,有效提升电子系统HPM防护能力。
中图分类号:
陈凯柏, 高博, 高敏, 余道杰, 周晓东, 宋燕燕, 王越. 电子系统高功率微波效应研究进展[J]. 系统工程与电子技术, 2025, 47(8): 2429-2443.
Kaibai CHEN, Bo GAO, Min GAO, Daojie YU, Xiaodong ZHOU, Yanyan SONG, Yue WANG. Research progress on high-power microwave effects in electronic systems[J]. Systems Engineering and Electronics, 2025, 47(8): 2429-2443.
表1
国外HPM源参数情况"
研究国家 | 研究机构 | 脉冲源型号 | 峰值功率/GW | 中心频率/GHz | 脉冲前沿/ns | 脉冲宽度/ns | 重频/Hz | |
美国[ | 空军研究实验室 | H3 | 43 | 360 | 1~2 | 0.13 | 0.3 | 2×103 |
H4 | 100 | — | 1~2 | 0.13 | 0.5 | — | ||
H5 | 15 | 430 | — | 0.238 | 2.5 | 2×103 | ||
IRA | — | 0.032~3 | 0.085 | 0.13 | 200 | |||
IRA II | — | 690 | 0.070~4 | 0.085 | 0.13 | 400 | ||
JOLT | — | 0.050~2 | 0.085 | 0.1 | 600 | |||
中国湖基地 | THOR | 200 | 680 | 0.2~1 | 0.2 | 0.4 | — | |
应用物理电子公司 | MG171C500PF | 0.4 | — | — | 0.2 | 2~3 | 100 | |
MG403C2700PF | 10 | — | — | <5 | — | 10 | ||
MG831C150NF | 230 | — | — | 1.2~100 | — | 1 | ||
圣地亚哥国家试验室 | SINPER | 1 | 400 | 0.1~3 | 0.15 | 2 | 1.2×103 | |
俄罗斯[ | 叶卡捷琳堡电物理研究所 | S-500 | >15 | 750 | 2~4 | 0.1 | 0.12 | 1×103 |
RADAN-303B | 0.2 | — | — | 0.25 | 4 | 100 | ||
托木斯克强流电子学研究所 | SINUS | 3.2 | — | — | 1 | 100 | ||
— | 0.6 | 690 | — | — | 0.5 | 100 | ||
— | — | 450 | — | 0.08 | 0.23 | 100 | ||
— | — | 440 | — | — | 1 | 100 | ||
— | — | 500 | 0.2~0.8 | — | 2~3 | 100 | ||
— | — | 220 | 0.1~1 | — | 2~3 | 100 | ||
— | — | 600 | 0.39~2 | — | 0.5 | 100 | ||
— | — | 200 | 0.15~2.7 | — | 1 | 100 | ||
— | — | — | 3.1~10.6 | 0.05 | 0.2 | — | ||
德国[ | 贝尔巴克公司 | FPG30P | — | — | — | 1 | 1~500 | 100 |
FPG5 | — | — | — | 0.3 | 1~2 | 5×105 | ||
代傲防务集团 | DS350 | 2 | 300 | — | — | — | 100 | |
武装技术研究所 | — | 0.8 | < | — | 0.25 | 0.5 | 1×103 | |
伊朗[ | 谢里夫理工大学 | — | 0.006 | — | — | — | 1.1 | 4.5×105 |
荷兰[ | 埃因霍芬理工大学 | — | — | — | — | 0.2 | 1~10 | 1×103 |
表2
常用算法及特点"
算法 | 算法特点 |
TLM | 依据惠更斯电磁波传播原理,结合Maxwell方程和边界条件求解模型的时域或频域响应,分析模型磁场分布 |
FIT | 通过正交网格完成离散Maxwell方程组的空间离散化,用中心差分代替时间导数,通过显式方程求解电磁场问题,无需进行矩阵求逆运算 |
FDTD | 根据差分形式的Maxwell方程组和模型初始条件、吸收边界条件,在时间轴上对计算元胞内的电磁场数据连续抽样,求解模型的电磁场时空分布 |
FEM | 以变分原理为基础,将模型分割为计算子域,在子域内使用插值函数表示未知量,通过迭代法或直接法求解子域节点边值问题 |
MOM | 将积分方程转换成算子方程,将待求解函数表示为基函数,将基函数代入算子方程并使用权函数获取矩量,得到代数方程组,该方法只需设置吸收边界条件 |
1 | GIRI D V, HOAD R, SABATH F. High power electromagnetic effects on electronic system[M]. London: Artech House, 2020. |
2 | PARFENOV Y V, CHEPELEV V M, RADASKY W A. About the possibility of mistakes when using unipolar electric field pulses when assessing electronic device immunity to UWB pulses[C]// Proc. of the IEEE International Symposium on Electromagnetic Compatibility and IEEE Asia-Pacific Symposium on Electromagnetic Compatibility, 2018: 928−931. |
3 |
BAUM C E. Reminiscences of high-power electromagnetics[J]. IEEE Trans. on Electromagnetic Compatibility, 2007, 49 (2): 211- 218.
doi: 10.1109/TEMC.2007.897147 |
4 |
ZHANG J, ZHANG D, FAN Y W, et al. Progress in narrowband high-power microwave sources[J]. Physics of Plasmas, 2020, 27 (1): 010501.
doi: 10.1063/1.5126271 |
5 | 钱宝良. 国外高功率微波技术的研究现状与发展趋势[J]. 真空电子技术, 2015, (2): 2- 7. |
QIAN B L. The research status and developing tendency of high power microwave technology in foreign countries[J]. Vacuum Electronics, 2015, (2): 2- 7. | |
6 |
PRATHER W D, BAUM C E. Ultra-wideband source and antenna research[J]. IEEE Trans. on Plasma Science, 2000, 28 (5): 1624- 1630.
doi: 10.1109/27.901245 |
7 |
EFREMOV A M, KOSHELEV V I, PLISKO V V, et al. A high-power source of ultrawideband pulses of synthesized radiation[J]. Instruments and Experimental Techniques, 2019, 62 (1): 33- 41.
doi: 10.1134/S0020441218060052 |
8 |
AGEE F J, BAUM C E, PRATHER W D, et al. Ultra-wideband transmitter research[J]. IEEE Trans. on Plasma Science, 1998, 26 (3): 860- 873.
doi: 10.1109/27.700855 |
9 |
BAUM C E, BAKER W L, PRATHER W D, et al. JOLT: a highly directive, very intensive, impulse-like radiator[J]. Proceedings of the IEEE, 2004, 92 (7): 1096- 1109.
doi: 10.1109/JPROC.2004.829011 |
10 | PRATHER W D, BAUM C E, LEHR J M, et al. Recent developments in ultra-wideband sources and antennas[C]// Proc. of the Conference on Ultra-Wideband, Short-Pulse Electromagnetics, 2003: 369−379. |
11 | 刘金亮, 樊旭亮, 白国强, 等. 紧凑型Marx发生器高功率微波源研究进展[J]. 强激光与粒子束, 2012, 24 (4): 757- 764. |
LIU J L, FAN X L, BAI G Q, et al. Progress of based on compact Marx generators high power microwave source[J]. High Power Laser and Particle Beams, 2012, 24 (4): 757- 764. | |
12 | APPLIED PHYSICAL ELECTRONICS LIMITED COMPANIES. Marx generators-APELC[EB/OL]. [2024-10-23]. https://apelc.com/marx-generators. |
13 | CLARK R S, RINEHART L F, BUTTRAM M T, et al. An overview of sandia national laboratories’ plasma switched, gigawatt, ultra-wideband impulse transmitter program[C]// Proc. of the Conference on Ultra-Wideband, Short-Pulse Electromagnetics, 1993: 93−98. |
14 | RUKIN S. Solid-state repetitive generators of short GW-range pulses: a review[J]. Journal of Instrumentation, 2018, 13 (8): P08001. |
15 |
MESYATS G A, KOROVIN S D, ROSTOV V V, et al. The RADAN series of compact pulsed power generators and their applications[J]. Proceedings of the IEEE, 2004, 92 (7): 1166- 1179.
doi: 10.1109/JPROC.2004.829005 |
16 |
EFREMOV A M, KOSHELEV V I, PLISKO V V, et al. A high-power synthesized ultrawideband radiation source[J]. Review of Scientific Instruments, 2017, 88 (9): 094705.
doi: 10.1063/1.5003418 |
17 |
PRATHER W D, BAUM C E, TORRES R J, et al. Survey of worldwide high-power wideband capabilities[J]. IEEE Trans. on Electromagnetic Compatibility, 2004, 46 (3): 335- 344.
doi: 10.1109/TEMC.2004.831826 |
18 | BALZOVSKY E V, BUYANOV Y I, KOSHELEV V I. Ultrawideband antenna arrays based on planar combined antennas for the frequency range of 3.1-10.6 GHz[J]. Journal of Physics: Conference Series, 2021, 1843 (1): 012003. |
19 | 梁勤金. 固态高功率高重频脉冲源的研究与发展[J]. 电讯技术, 2019, 59 (10): 1227- 1236. |
LIANG Q J. Research and development of solid state high power high repetition frequency pulse source[J]. Telecommunication Engineering, 2019, 59 (10): 1227- 1236. | |
20 | SABATH F, NITSCH D, JUNG M, et al. Design and setup of an UWB simulator for susceptibility investigations[C]// Proc. of the 27th General Assembly URSI, 2002. |
21 |
NIKOO M S, HASHEMI S M A, DILMAGHANIAN M O. DSRD-based high-power repetitive short-pulse generator containing GDT: theory and experiment[J]. IEEE Trans. on Plasma Science, 2017, 45 (8): 2341- 2350.
doi: 10.1109/TPS.2017.2717047 |
22 |
HUISKAMP T, BECKERS F, HEESCH E J M, et al. First implementation of a sub-nanosecond rise time, variable pulse duration, variable amplitude, repetitive, high-voltage pulse source[J]. IEEE Trans. on Plasma Science, 2014, 42 (3): 859- 867.
doi: 10.1109/TPS.2014.2300895 |
23 | 牛卉, 伍洋, 李明. 国外高功率微波武器发展情况研究[J]. 飞航导弹, 2021, 8, 12- 16,23. |
NIU H, WU Y, LI M. Research on the development of high-power microwave weapons abroad[J]. Aerodynamic Missile Journal, 2021, 8, 12- 16,23. | |
24 | 王永芳, 许健明, 徐晓艳. 基于专利分析国外高功率微波武器发展情况[J]. 国防科技, 2022, 43 (6): 14- 19. |
WANG Y F, XU J M, XU X Y. An analysis of the development of foreign high power microwave weapons based on patents[J]. National Defense Technology, 2022, 43 (6): 14- 19. | |
25 | 张帅, 张艺博, 涂敏. 浅析美国高功率微波效应研究动态[J]. 强激光与粒子束, 2024, 36 (1): 5- 8. |
ZHANG S, ZHANG Y B, TU M. Brief analysis of research trends of high power microwave effect in the United States[J]. High Power Laser and Particle Beams, 2024, 36 (1): 5- 8. | |
26 | 贺军涛, 姚金妹, 王蕾. 美欧高功率微波技术研究现状及发展趋势[J]. 信息对抗技术, 2023, 2 (4): 123- 137. |
HE J T, YAO J M, WANG L. Research status and prospect of high power microwave technology in the United States and Europe[J]. Information Countermeasure Technology, 2023, 2 (4): 123- 137. | |
27 | 赵鸿燕, 周丽. 国外高功率微波武器发展研究[J]. 航空兵器, 2023, 30 (4): 42- 48. |
ZHAO H Y, ZHOU L. Research on the development of high-power microwave weapon abroad[J]. Aero Weaponry, 2023, 30 (4): 42- 48. | |
28 | 李庆颍. 机载设备电磁脉冲防护方法研究[D]. 沈阳: 沈阳航空航天大学, 2018. |
LI Q Y. Research on the method of electromagnetic pulses protection for airborne equipment[D]. Shenyang: Shenyang Aerospace University, 2018. | |
29 |
MIN S H, JUNG H, KWON O, et al. Analysis of electromagnetic pulse effects under high-power microwave sources[J]. IEEE Access, 2021, 9, 136775- 136791.
doi: 10.1109/ACCESS.2021.3117395 |
30 |
SEWELL P, TURNER J D, ROBINSON M P, et al. Comparison of analytic, numerical and approximate models for shielding effectiveness with measurement[J]. IEE Proceedings-Science, Measurement and Technology, 1998, 145 (2): 61- 66.
doi: 10.1049/ip-smt:19981832 |
31 |
SOLIN J R. Formula for the field excited in a rectangular cavity with an electrically large aperture[J]. IEEE Trans. on Electromagnetic Compatibility, 2012, 54 (1): 188- 192.
doi: 10.1109/TEMC.2011.2179941 |
32 | MENDEZ H A. Shielding theory of enclosures with apertures[J]. IEEE Trans. on Electromagnetic Compatibility, 1978, 20 (2): 296- 305. |
33 |
BRIDGES J E. An update on the circuit approach to calculate shielding effectiveness[J]. IEEE Trans. on Electromagnetic Compatibility, 1988, 30 (3): 211- 221.
doi: 10.1109/15.3299 |
34 |
BETHE H A. Theory of diffraction by small holes[J]. Physical Review, 1944, 66 (7-8): 163- 182.
doi: 10.1103/PhysRev.66.163 |
35 | SOLIN J R. Shielding effectiveness of satellite faraday cages with EMI taped seams and closeouts[J]. IEEE Electromagnetic Compatibility Magazine, 2018, 7 (2): 40- 46. |
36 | 张亚普, 达新宇, 祝杨坤, 等. 电大开孔箱体屏蔽效能分析解析模型[J]. 物理学报, 2014, 63 (23): 164- 173. |
ZHANG Y P, DA X Y, ZHU Y K, et al. Formulation for shielding effectiveness analysis of a rectangular enclosure with an electrically large aperture[J]. Acta Physica Sinica, 2014, 63 (23): 164- 173. | |
37 | 公延飞, 郝建红, 蒋璐行, 等. 基于Bethe小孔耦合理论和镜像原理的双腔体电磁泄漏的解析模型[J]. 电工技术学报, 2018, 33 (9): 2139- 2147. |
GONG Y F, HAO J H, JIANG L X, et al. An analytical model for electromagnetic leakage from double cascaded enclosures based on Bethe’s small aperture coupling theory and mirror procedure[J]. Transactions of China Electrotechnical Society, 2018, 33 (9): 2139- 2147. | |
38 | JIANG L H, HAO J H, GONG Y F. Analytical method for electromagnetic coupling to a penetrated transmission line in cascaded multiple enclosures with hybrid apertures[J]. Journal of Electromagnetic Waves and Applications, 2019, 33 (7): 1131- 1144. |
39 |
ROBINSON M P, BENSON T M, CHRISTOPOULOS C, et al. Analytical formulation for the shielding effectiveness of enclosures with apertures[J]. IEEE Trans. on Electromagnetic Compatibility, 1998, 40 (3): 240- 248.
doi: 10.1109/15.709422 |
40 |
SHIM J, KAM D G, KWON J H, et al. Circuital modeling and measurement of shielding effectiveness against oblique incident plane wave on apertures in multiple sides of rectangular enclosure[J]. IEEE Trans. on Electromagnetic Compatibility, 2010, 52 (3): 566- 577.
doi: 10.1109/TEMC.2009.2039483 |
41 |
AZARO R, CAORSI S, DONELLI M, et al. A circuital approach to evaluating the electromagnetic field on rectangular apertures backed by rectangular cavities[J]. IEEE Trans. on Microwave Theory and Techniques, 2002, 50 (10): 2259- 2266.
doi: 10.1109/TMTT.2002.803434 |
42 | POAD F A, JENU M Z M, CHRISTOPOULOS C, et al. Analytical and experimental study of the shielding effectiveness of a metallic enclosure with off-centered apertures[C]// Proc. of the 17th International Zurich Symposium on Electromagnetic Compatibility, 2006: 618−621. |
43 |
SU D L, LIU H, YANG S, et al. An analytical method for calculating the shielding effectiveness of an enclosure with an oblique rectangular aperture[J]. Chinese Journal of Electronics, 2019, 28 (4): 850- 855.
doi: 10.1049/cje.2019.02.006 |
44 |
NIE B L, LIU Q S, DU P A. An improved thickness correction method of analytical formulations for shielding effectiveness prediction[J]. IEEE Trans. on Electromagnetic Compatibility, 2016, 58 (3): 907- 910.
doi: 10.1109/TEMC.2016.2533661 |
45 | HU P Y, SUN X Y, CHEN J. Hybrid model for estimating the shielding effectiveness of metallic enclosures with arbitrary apertures[J]. IET Science, Measurement & Technology, 2020, 14(4): 462−470. |
46 | NIE B L, DU P A, XIAO P. An improved circuital method for the prediction of shielding effectiveness of an enclosure with apertures excited by a plane wave[J]. IEEE Trans. on Electromagnetic Compatibility, 2017, 60 (5): 1376- 1383. |
47 |
CHEN K B, GAO M, LIU S H, et al. A circuit model for predicting the shielding effectiveness of cylindrical enclosure[J]. Measurement Science and Technology, 2022, 33 (11): 115006.
doi: 10.1088/1361-6501/ac8366 |
48 |
RABAT A, BONNET P, DRISSI K E K, et al. An analytical evaluation of the shielding effectiveness of enclosures containing complex apertures[J]. IEEE Access, 2021, 9, 147191- 147200.
doi: 10.1109/ACCESS.2021.3123441 |
49 | 林竞羽, 周东方, 毛天鹏, 等. 电磁拓扑分析中的BLT方程及其应用[J]. 信息工程大学学报, 2004, (2): 118- 121. |
LIN J Y, ZHOU D F, MAO T P , et al. BLT equation in electromagnetic topology analysis and its application[J]. Journal of Information Engineering University, 2004, (2): 118- 121. | |
50 | TESCHE F M, BUTLER C M. On the addition of EM field propagation and coupling effects in the BLT equation[J]. Interaction Notes, 2003, 588, 1- 43. |
51 |
BAUM C E. Including apertures and cavities in the BLT formalism[J]. Electromagnetics, 2005, 25 (7/8): 623- 635.
doi: 10.1080/02726340500214852 |
52 | ZHANG X, ZHOU Z P, WANG, Z L, et al. An approach to approximate evaluation of shielding effectiveness of double-cavity structure with an aperture array using BLT equation[C]// Proc. of the Frontier Academic Forum of Electrical Engineering, 2022: 967−976. |
53 |
CHEN K B, GAO M, ZHOU X D. A model for the prediction of the shielding effectiveness of cylindrical enclosure[J]. AIP Advances, 2022, 12 (8): 085309.
doi: 10.1063/5.0091183 |
54 |
BRUNS H D, SCHUSTER C, SINGER H. Numerical electromagnetic field analysis for EMC problems[J]. IEEE Trans. on Electromagnetic Compatibility, 2007, 49 (2): 253- 262.
doi: 10.1109/TEMC.2007.897152 |
55 | 任卓翔, 闫帅, 陈志福, 等. 电工装备低频电磁仿真中若干关键问题研究现状及趋势[J]. 高电压技术, 2024, 50 (3): 905- 923. |
REN Z X, YAN S, CHEN Z F, et al. State of the art and trend of several key issues in low frequency electromagnetic simulation of electrical equipment[J]. High Voltage Engineering, 2024, 50 (3): 905- 923. | |
56 |
VENKATA S C P, JAYASREE P. Innovative measurement and noise reduction of voltage coupling in shielded cables for enhanced signal integrity[J]. AIP Advances, 2023, 13, 085030.
doi: 10.1063/5.0167508 |
57 | LARIBI H, DEHKHODA P, TAVAKOLI A, et al. Susceptibility analysis of a low noise amplifier against an electromagnetic pulse[J]. IET Science, Measurement & Technology, 2020, 14(10): 1044−1048. |
58 |
CHEN K B, LIU S H, GAO M. Simulation and analysis of an FMCW radar against the UWB EMP coupling responses on the wires[J]. Sensors, 2022, 22 (12): 4641.
doi: 10.3390/s22124641 |
59 | 王蕾, 柴常春, 赵天龙, 等. p-GaN HEMT强电磁脉冲损伤效应与防护设计研究[J]. 西安电子科技大学学报, 2023, 50 (6): 34- 43. |
WANG L, CHAI C C, ZHAO T L, et al. Damage effect and protection design of the p-GaN HEMT induced by the high power electromagnetic pulse[J]. Journal of Xidian University, 2023, 50 (6): 34- 43. | |
60 | 张兵, 方子璇, 彭帅, 等. 高功率微波频率对PIN限幅器的影响分析[J]. 电子科技大学学报, 2024, 53 (3): 321- 326. |
ZHANG B, FANG Z X, PENG S, et al. Effect analysis of high power microwave frequency on PIN limiter[J]. Journal of University of Electronic Science and Technology of China, 2024, 53 (3): 321- 326. | |
61 |
ZHANG H X, ZHAN Q, HUANG L, et, al. A scalable HPC-based domain decomposition method for multiphysics modeling of RF devices[J]. IEEE Trans. on Components, Packaging and Manufacturing Technology, 2021, 11 (12): 2158- 2170.
doi: 10.1109/TCPMT.2021.3121540 |
62 | SABATH F. IEMI风险评估——用结构化方法改进关键基础设施对电磁攻击的恢复能力[J]. 安全与电磁兼容, 2016, 2, 9- 10,22. |
SABATH F. IEMI risk assessment-a structured way to improve the resilience of critical infrastructures to electromagnetic attacks[J]. Safety & EMC, 2016, 2, 9- 10,22. | |
63 | MIL-STD-188-125-2. High altitude electromagnetic pulse (HEMP) protection for ground-based C4I facilities performing critical time-urgent missions, part 2: transportable systems[S]. Washington, D. C.: United States Department of Defense, 1999. |
64 |
CROVETTI P S. Reproduction of the effects of an arbitrary radiated field by ground current injection[J]. IEEE Trans. on Microwave Theory and Techniques, 2012, 60 (4): 1136- 1145.
doi: 10.1109/TMTT.2012.2183382 |
65 | 魏光辉, 卢新福, 潘晓东. 强场电磁辐射效应测试方法研究进展与发展趋势[J]. 高电压技术, 2016, 42 (5): 1347- 1355. |
WEI G H, LU X F, PAN X D. Recent progress and development in test methods for high intensity electromagnetic field radiation effect[J]. High Voltage Engineering, 2016, 42 (5): 1347- 1355. | |
66 |
WUNSCH D C, BELL R R. Determination of threshold failure levels of semiconductor diodes and transistors due to pulse voltages[J]. IEEE Trans. on Nuclear Science, 1968, 15 (6): 244- 259.
doi: 10.1109/TNS.1968.4325054 |
67 |
TASCA D M. Pulse power failure modes in semiconductors[J]. IEEE Trans. on Nuclear Science, 1970, 17 (6): 364- 372.
doi: 10.1109/TNS.1970.4325819 |
68 |
WHALEN J J, CALCATERA M C, THORN M L. Microwave nanosecond pulse burnout properties of GaAs MESFET’s[J]. IEEE Trans. on Microwave Theory and Techniques, 1979, 27 (12): 1026- 1031.
doi: 10.1109/TMTT.1979.1129785 |
69 |
ILIADIS A A, KIM K. Theoretical foundation for upsets in CMOS circuits due to high-power electromagnetic interference[J]. IEEE Trans. on Device and Materials Reliability, 2010, 10 (3): 347- 352.
doi: 10.1109/TDMR.2010.2050692 |
70 |
NITSCH D, CAMP M, SABATH F, et al. Susceptibility of some electronic equipment to HPEM threats[J]. IEEE Trans. on Electromagnetic Compatibility, 2004, 46 (3): 380- 389.
doi: 10.1109/TEMC.2004.831842 |
71 |
DENG X C, HUANG W, LI X, et al. Investigation of failure mechanisms of 1200V rated trench SiC MOSFETs under repetitive avalanche stress[J]. IEEE Trans. on Power Electronics, 2022, 37 (9): 10562- 10571.
doi: 10.1109/TPEL.2022.3163930 |
72 | LI Q W, SUN J, LI F X, et al. C band microwave damage characteristics of pseudomorphic high electron mobility transistor[J]. Chinese Physics B, 2021, 30 (9): 605- 611. |
73 | CAMP M, GARBE H, NITSCH D. UWB and EMP susceptibility of modern electronics[C]// Proc. of the IEEE International Symposium on Electromagnetic Compatibility, 2001, 2: 1015−1020. |
74 | MORO N, DEHBAOUI A, HEYDEMANN K, et al. Electromagnetic fault injection: towards a fault model on a 32-bit microcontroller[C]// Proc. of the Workshop on Fault Diagnosis and Tolerance in Cryptography, 2013: 77−88. |
75 |
MORO N, HEYDEMANN K, ENCRENAZ E, et al. Formal verification of a software countermeasure against instruction skip attacks[J]. Journal of Cryptographic Engineering, 2014, 4 (3): 145- 156.
doi: 10.1007/s13389-014-0077-7 |
76 | LTCI O T, LTCI L S, LTCI J L D. Characterization of electromagnetic fault injection on a 32-bit microcontroller instruction buffer[C]// Proc. of the Asian Hardware Oriented Security and Trust Symposium, 2020. |
77 |
HOAD R, CARTER N J, HERKE D, et al. Trends in EM susceptibility of IT equipment[J]. IEEE Trans. on Electromagnetic Compatibility, 2004, 46 (3): 390- 395.
doi: 10.1109/TEMC.2004.831815 |
78 | SABATH F. HPEM susceptibility test on IT-Networks and their components[C]// Proc. of the 29th General Assembly of the URSI, 2008. |
79 |
ZHENG J Y, WEI G H, QI C. Research on blocking interference for digital radio station under UWB EMP[J]. AIP Advances, 2021, 11 (5): 055306.
doi: 10.1063/5.0048853 |
80 | 熊久良. 典型米波无线电引信电磁脉冲辐照效应[J]. 高电压技术, 2017, 43 (10): 3371- 3380. |
XIONG J L. Irradiation effect of emp on typical metric wave radio fuze[J]. High Voltage Engineering, 2017, 43 (10): 3371- 3380. | |
81 |
BACKSTROM M, LOVSTRAND K G. Susceptibility of electronic systems to high-power microwaves: summary of test experience[J]. IEEE Trans. on Electromagnetic Compatibility, 2004, 46 (3): 396- 403.
doi: 10.1109/TEMC.2004.831814 |
82 | CAMP M, SCHMITZ J, JUNG M. Vulnerability and coupling behaviour of a TETRA communication system to electromagnetic fields[C]// Proc. of the IEEE International Symposium on Electromagnetic Compatibility, 2015: 344−349. |
83 |
MAO Q D, XIANG Z W, HUANG L Y, et al. High-power microwave pulse-induced failure on unmanned aerial vehicle system[J]. IEEE Trans. on Plasma Science, 2023, 51 (7): 1885- 1893.
doi: 10.1109/TPS.2023.3236300 |
84 | 安亚帅. 高功率电磁脉冲对无人机惯性系统的毁伤效应研究[D]. 南京: 南京理工大学, 2023. |
AN Y S. Research on the destructive effect of high-power electromagnetic pulse on unmanned aerial vehicle inertial system[D]. Nanjing: Nanjing University of Science & Technology, 2023. | |
85 | YANG C X, CUI D H, CHEN Z H, et al. High-power microwave damage assessment method for UAV[J]. Journal of Physics: Conference Series, 2022, 2478 (8): 082011. |
86 |
张庆龙, 王玉明, 程二威, 等. 导航接收机跟踪环路电磁干扰的预测方法研究[J]. 电子与信息学报, 2021, 43 (12): 3656- 3661.
doi: 10.11999/JEIT200895 |
ZHANG Q L, WANG Y M, CHENG E W, et al. Investigation on prediction method of electromagnetic interference in the tracking loop of navigation receiver[J]. Journal of Electronics & Information Technology, 2021, 43 (12): 3656- 3661.
doi: 10.11999/JEIT200895 |
|
87 | 余道杰, 雷顺天, 贺凯, 等. 无人机定位系统电源分配网络电磁干扰行为级分析与预测[J]. 强激光与粒子束, 2023, 35 (5): 42- 48. |
YU D J, LEI S T, HE K, et al. Analysis and prediction of electromagnetic interference behavior level in power distribution network of UAV positioning system[J]. High Power Laser and Particle Beams, 2023, 35 (5): 42- 48. | |
88 | 周长林, 王振义, 刘统, 等. 基于BP神经网络的低压差线性稳压器电磁干扰损伤模型[J]. 高电压技术, 2016, 42 (3): 973- 979. |
ZHOU C L, WANG Z Y, LIU T, et al. Low dropout linear regulator electromagnetic interference damage model based on BP neural network[J]. High Voltage Engineering, 2016, 42 (3): 973- 979. | |
89 |
WU J F, BOYER A, LI J, et al. Modeling and simulation of LDO voltage regulator susceptibility to conducted EMI[J]. IEEE Trans. on Electromagnetic Compatibility, 2014, 56 (3): 726- 735.
doi: 10.1109/TEMC.2013.2294951 |
90 | 王寅达, 李谭毅, 王一尧, 等. 高功率微波作用下微系统中电磁-热耦合效应仿真新方法及验证[C]//全国天线年会, 2021: 1927−1930. |
WANG Y D, LI T Y, WANG Y Y, et al. Novel simulation method and its verification of electro-thermal coupling effect in microsystem under high power microwave injection[C]// Proc. of the National Antenna Annual Conference, 2021: 1927−1930. | |
91 |
ZHANG H X, ZHAN Q, HUANG L, et al. Multiphysics computing of challenging antenna arrays under a supercomputer framework[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2023, 8, 165- 177.
doi: 10.1109/JMMCT.2023.3254661 |
92 | 张天成. 时域不连续伽辽金的多尺度/非线性电磁问题高效分析方法研究[D]. 南京: 南京理工大学, 2022. |
ZHANG T C. Efficient discontinuous Galerkin time-domain method for multiscale/nonlinear electromagnetic problems[D]. Nanjing: Nanjing University of Science & Technology, 2022. | |
93 | BRAUER F, SABATH F, HASEBORG J L. Susceptibility of IT network systems to interferences by HPEM[C]// Proc. of the IEEE International Symposium on Electromagnetic Compatibility, 2009: 237−242. |
94 | 郝建红, 潘慧东, 范杰清. 基于时间门方法的随机耦合模型在复杂腔体电磁预测中的应用[J]. 电波科学学报, 2021, 36 (1): 61- 67. |
HAO J H, PAN H D, FAN J Q. Application of random coupling model based on time gating method in electromagnetic prediction of complex cavity[J]. Chinese Journal of Radio Science, 2021, 36 (1): 61- 67. |
[1] | 张超, 房颖涛, 董志杰, 何世烈, 周振威. 基于CGSPN的复杂电子系统测试性参数确定方法[J]. 系统工程与电子技术, 2025, 47(5): 1525-1535. |
[2] | 李卫斌, 秦晨浩, 张天一, 毛鑫, 杨东浩, 纪文搏, 侯彪, 焦李成. 综述: 类脑智能导航建模技术及其应用[J]. 系统工程与电子技术, 2024, 46(11): 3844-3861. |
[3] | 王鹏, 刘嘉琛, 董磊, 赵长啸. 面向任务的民机DIMA动态重构策略[J]. 系统工程与电子技术, 2021, 43(6): 1618-1627. |
[4] | 高泽海, 马存宝, 牛浩田. 综合模块化航电系统性能退化Lévy模型[J]. 系统工程与电子技术, 2021, 43(4): 1144-1152. |
[5] | 陈凯柏, 周晓东, 高敏, 范宇清. 毫米波引信射频前端UWB-HPM效应研究[J]. 系统工程与电子技术, 2020, 42(2): 284-291. |
[6] | 范宇清, 程二威, 魏明, 张庆龙, 陈亚洲. 高功率微波弹对GNSS接收机毁伤效果分析[J]. 系统工程与电子技术, 2020, 42(1): 37-44. |
[7] | 高明哲, 许爱强, 张伟. 自适应建模相关向量机及其在电子系统状态预测中的应用[J]. 系统工程与电子技术, 2017, 39(8): 1898-1904. |
[8] | 唐鑫, 杨建军, 严聪, 任宝祥. HPM武器电子毁伤效能评估方法[J]. 系统工程与电子技术, 2016, 38(10): 2317-2323. |
[9] | 范庚,马登武,吴明辉,孟上. 电子系统状态时间序列预测的优化相关向量机方法[J]. 系统工程与电子技术, 2013, 35(9): 2011-2015. |
[10] | 陈昊,黎明,江泽涛,储珺. 处理动态优化问题的演化元胞遗传算法[J]. Journal of Systems Engineering and Electronics, 2013, 35(5): 1115-1221. |
[11] | 王岩, 朱齐丹, 刘志林, 杨震. 改进的稀疏孪生支持向量回归算法[J]. Journal of Systems Engineering and Electronics, 2012, 34(9): 1940-1945. |
[12] | 梁新元. 因果图迭代推理算法研究[J]. Journal of Systems Engineering and Electronics, 2012, 34(6): 1299-1304. |
[13] | 杨博, 张军英. 基于高斯噪声模型的马尔可夫网络构建算法[J]. Journal of Systems Engineering and Electronics, 2012, 34(5): 1041-1045. |
[14] | 焦传海, 王可人. 一种基于免疫遗传算法的认知决策引擎[J]. Journal of Systems Engineering and Electronics, 2010, 32(5): 1083-1087. |
[15] | 赵佰亭,陈希军,曾庆双. 基于邻域粒化的小生境微粒群混合数据约简[J]. Journal of Systems Engineering and Electronics, 2010, 32(12): 2603-2607. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||