1 |
ARORA V K . Proximity fuzes theory and techniques[M]. New Delhi: Defence Research & Development Organisation, 2010: 1- 2.
|
2 |
DONGNYOK L , KEUNSIG Y . A study on the estimation of shelf life for fuze MTSQ KM577A1 from ASRP data[J]. Journal of Applied Reliability, 2018, 18 (1): 56- 65.
doi: 10.33162/JAR.2018.03.18.1.56
|
3 |
WANG Z , HAO X H , GUO C X , et al. Optimized narrow-band sweep jamming approach for frequency-modulated continuous-wave radio fuze[J]. High Power Laser and Particle Beams, 2017, 29 (10): 103201- 103205.
|
4 |
FRANKS. IEMI风险评估——用结构化方法改进关键基础设施对电磁攻击的恢复能力[J]. 安全与电磁兼容, 2016, (2): 9- 10.
|
|
FRANK S . IEMI risk assessment——a structured way to improve the resilience of critical infrastructures to electromagnetic attacks[J]. Safety and Electromagnetic Compatibility, 2016, (2): 9- 10.
|
5 |
EREZ B A , JACOB K . Design of an ultra-wideband high-power-microwave traveling-wave antenna[J]. Elektronika, 2015, 56 (9): 66- 71.
|
6 |
李永亮, 闫晓鹏, 郝新红, 等. 超宽带电磁脉冲对典型引信的耦合效应研究[J]. 强激光与粒子束, 2014, 26 (7): 229- 233.
|
|
LI Y L , YAN X P , HAO X H , et al. Coupling effect of ultra-wideband electromagnetic pulse on typical fuze[J]. High Power Laser and Particle Beams, 2014, 26 (7): 229- 233.
|
7 |
LOU W Z , LIU C Q , WANG Z . Protection and reinforcement technology of smart penetration fuze[J]. Journal of Beijing Institute of Technology, 2012, 21 (3): 285- 290.
|
8 |
TIAN B, LI T, LI W. An adaptive precision array laser fuze detection simulation method[C]//Proc.of the 12th International Symposium on Antennas, Propagation and EM Theory, 2018: 1-6.
|
9 |
杨洁, 王彪, 王书平, 等. 无线电引信电磁辐射能量耦合路径研究[J]. 装备环境工程, 2017, 14 (4): 21- 25.
|
|
YANG J , WANG B , WANG S P , et al. Energy coupling path of radio fuze under the electromagnetic radiation conditions[J]. Equipment Environmental Engineering, 2017, 14 (4): 21- 25.
|
10 |
熊久良, 武占成. 超宽带对典型调频引信安全性的影响[J]. 高电压技术, 2016, 42 (6): 1997- 2002.
|
|
XIONG J L , WU Z C . Effect of ultra-wide band on security of typical frequency modulation fuze[J]. High Voltage Engineering, 2016, 42 (6): 1997- 2002.
|
11 |
WANG Z , HAO X H , GUO C X , et al. Optimized narrow-band sweep jamming approach for frequency-modulated continuous-wave radio fuze[J]. High Power Laser and Particle Beams, 2017, 29 (10): 103201- 103205.
|
12 |
XIONG J L . Interference analysis of step-forward sweep frequency wave on a certain decimeter wave fuze[J]. High Voltage Engineering, 2018, 44 (4): 1225- 1231.
|
13 |
LIU Y , CHAI C C , FAN Q Y , et al. Ku band damage characteristics of GaAs PHEMT induced by a front-door coupling microwave pulse[J]. Microelectronics Reliability, 2016, 66, 32- 37.
doi: 10.1016/j.microrel.2016.09.002
|
14 |
LIU Y , CHAI C C , YANG Y T , et al. Damage effect and mechanism of the GaAs high electron mobility transistor induced by high power microwave[J]. Chinese Physics B, 2016, 25 (4): 048504.
doi: 10.1088/1674-1056/25/4/048504
|
15 |
YU X H , CHAI C C , LIU Y , et al. Analysis of high-power microwave induced degradation and damage effects in Al GaAs/In GaAs p HEMTs[J]. Microelectronics Reliability, 2015, 55 (8): 1174- 1179.
doi: 10.1016/j.microrel.2015.06.002
|
16 |
YU X H , CHAI C C , LIU Y , et al. Modeling and understanding of the frequency dependent HPM upset susceptibility of the CMOS inverter[J]. Science China Information Sciences, 2015, 58 (8): 082402.
|
17 |
ANTHONY J D. SADARM status report[C]//Proc.of the SPIE-Surveillance Technologies, 1991: 228-248.
|
18 |
SALEM A , HAMDI K A , RABIE K M . Physical layer security with RF energy harvesting in AF multi-antenna relaying networks[J]. IEEE Trans.on Communications, 2016, 64 (7): 1- 1.
doi: 10.1109/TCOMM.2016.2584718
|
19 |
NEELY M . Stochastic network optimization with application to communication and queueing systems[J]. Synthesis Lectures on Communication Networks, 2010, 3 (1): 211.
|
20 |
NGUYEN H K , MANKOWSKI J , DICKENS J C , et al. Model predictions for atmospheric air breakdown by radio-frequency excitation in large gaps[J]. Physics of Plasmas, 2017, 24 (7): 035003.
|
21 |
ZHAO P C , GUO L X , SHU P P . Effect of air breakdown on microwave pulse energy transmission[J]. Chinese Physics B, 2017, 26 (2): 546- 550.
|
22 |
周东方, 张德伟, 王利萍, 等. 基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究[J]. 物理学报, 2013, 62 (1): 0142071- 0142077.
|
|
ZHOU D F , ZHANG D W , WANG L P , et al. Theoretical and experimental investigation of air-breakdown on single high-power microwave based on the mixed-atmosphere propagation model[J]. Acta Physica Sinica, 2013, 62 (1): 0142071- 0142077.
|
23 |
ZHAO P C , GUO L X , SHU P P . Effect of air breakdown on microwave pulse energy transmission[J]. Chinese Physics B, 2017, 26 (02): 550- 554.
|
24 |
余道杰, 张长峰, 彭平, 等. 高功率微波大气传输折射指数和衰减系数计算统一模型[J]. 微波学报, 2008, 24 (5): 74- 77.
|
|
YU D J , ZHANG C F , PENG P , et al. Unified calculation model of the refractive index and attenuation coefficient for high power microwave propagation in the atmosphere[J]. Journal of Microwaves, 2008, 24 (5): 74- 77.
|
25 |
胡锐.卫星导航接收机强电磁脉冲耦合机理研究[D].北京:北京交通大学, 2018: 11-12.
|
|
HU R.Research on the coupling mechanism of strong electromagnetic pulse for satellite navigation receiver[D]. Beijing: Beijing Jiaotong University, 2018: 11-12.
|
26 |
MUHAMMAD A , CHEN X M , LI Q L , et al. Mutual coupling and correlation of closely spaced patch antennas[J]. Electronics Letters, 2019, 55 (13): 724- 726.
doi: 10.1049/el.2019.1383
|
27 |
ZHANG Z Y , WU K L . Double torsion coil feeding structure for patch antennas[J]. IEEE Trans.on Antennas and Propagation, 2019, 67 (6): 3688- 3694.
doi: 10.1109/TAP.2019.2905791
|
28 |
RAJAN S P , VIVEK C . Analysis and design of microstrip patch antenna for radar communication[J]. Journal of Electrical Engineering & Technology, 2019, 14 (2): 923- 929.
|