

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (5): 1525-1535.doi: 10.12305/j.issn.1001-506X.2025.05.15
• 系统工程 • 上一篇
张超1,2,*, 房颖涛1,3, 董志杰4, 何世烈1,5, 周振威5
收稿日期:2024-07-31
出版日期:2025-06-11
发布日期:2025-06-18
通讯作者:
张超
作者简介:张超 (1977—), 男, 教授, 博士, 主要研究方向为测试性设计、故障诊断、容错控制基金资助:Chao ZHANG1,2,*, Yingtao FANG1,3, Zhijie DONG4, Shilie HE1,5, Zhenwei ZHOU5
Received:2024-07-31
Online:2025-06-11
Published:2025-06-18
Contact:
Chao ZHANG
摘要:
因大量采用分布式、综合化、模块化方案, 复杂电子系统极易出现共因故障和故障并发等新问题, 传统测试性参数确定方法难以解决。针对这一问题, 提出一种基于着色广义随机Petri网(colored generalized stochastic Petri nets, CGSPN)的复杂电子系统测试性参数确定新方法。首先, 综合需求信息、约束边界和维修保障等要求, 建立电子系统两层级CGSPN模型, 引入着色,实现不同模块各种状态的实时追踪和故障并发处理, 通过广义随机处理共因故障的随机不确定性;然后, 利用着色和可用度探索一种带有冗余设计的测试性参数处理手段, 丰富测试性体系;最后, 构建一种不同模块、各种状态融合的并行分析技术, 统一系统层和模块层之间的状态转移关系, 避免分阶段串行处理和等效替换。以通信导航识别系统为例进行实例分析, 所提方法比传统方法具有更好的可用性和有效性。
中图分类号:
张超, 房颖涛, 董志杰, 何世烈, 周振威. 基于CGSPN的复杂电子系统测试性参数确定方法[J]. 系统工程与电子技术, 2025, 47(5): 1525-1535.
Chao ZHANG, Yingtao FANG, Zhijie DONG, Shilie HE, Zhenwei ZHOU. Research ondetermination method for testability parameters of complex electronic systems based on CGSPN[J]. Systems Engineering and Electronics, 2025, 47(5): 1525-1535.
表5
测试性参数确定方法对比"
| 方法 | 算法对比分析 | |||||
| 随机性问题 | 不确定性问题 | 并发问题 | 冗余问题 | 共因问题 | 特点 | |
| 类比法 | × | × | × | × | × | 不合理, 需要类似装备。 |
| 经验法 | × | × | × | × | × | 不合理, 需要以往经验。 |
| 权衡法 | × | × | × | × | × | 不合理, 需要类似装备。 |
| PN | × | × | × | × | × | 无法处理随机性和时间因素, 因此不适合建模具有时序和随机性的系统。 |
| SPN | √ | × | × | √ | √ | 无法处理时间因素, 因此不适合建模具有时序的系统。 |
| GSPN | √ | √ | × | √ | √ | 可以描述系统不确定性与随机性, 无法描述故障并发问题, 面对复杂系统建模能力有限。 |
| DSPN | √ | √ | × | √ | √ | 在GSPN基础上增加确定时间变迁, 但依旧无法描述故障 并发问题, 面对复杂系统建模能力有限。 |
| CGSPN | √ | √ | √ | √ | √ | 由于引入着色概念, 能够处理系统并发问题, 建模更加灵活, 能够更好地描述多类资源的系统行为。 |
| 1 |
陆宁云, 李洋, 姜斌, 等. 复杂系统测试性设计与故障诊断策略研究进展[J]. 系统工程与电子技术, 2024, 46 (7): 2359- 2373.
doi: 10.12305/j.issn.1001-506X.2024.07.18 |
|
LU N Y , LI Y , JIANG B , et al. Overview of design of testability and DOT based fault diagnosis strategy for complex systems[J]. Systems Engineering and Electronics, 2024, 46 (7): 2359- 2373.
doi: 10.12305/j.issn.1001-506X.2024.07.18 |
|
| 2 | 张涛, 张文涛, 代凌, 等. 基于序贯博弈多智能体强化学习的综合模块化航空电子系统重构方法[J]. 电子学报, 2022, 50 (4): 954- 966. |
| ZHANG T , ZHANG W T , DAI L , et al. Integrated modular avionics system reconstruction method based on sequential game multi-agent reinforcement learning[J]. Acta Electronica Sinica, 2022, 50 (4): 954- 966. | |
| 3 | ZHAO C X , ZHANG W , DONG F Z , et al. Researchon resource allocation method of integrated avionics system considering fault propagation risk[J]. International Journal of Aerospace Engineering, 2022, 2022 (8): 8652818. |
| 4 | MARKOV A A, MAVRIS D N. A dynamic Bayesian network approach for modeling integrated modular avionics system reliability[C]// Proc. of the AIAA Aviation Forum, 2022. |
| 5 | 王璟玢, 戴苏榕, 周云, 等. 面向复杂航空电子系统的GSPN任务可靠性建模研究[J]. 航空电子技术, 2020, 51 (2): 1- 5. |
| WANG J B , DAI S R , ZHOU Y , et al. Research on GSPN-based mission reliability modeling of complexed avionics system[J]. Avionics Technology, 2020, 51 (2): 1- 5. | |
| 6 | 周贵荣, 徐见源, 马少博, 等. 大型客机航电系统综合集成关键技术综述[J]. 航空学报, 2024, 45 (5): 245- 287. |
| ZHOU G R , XU J Y , MA S B , et al. Review of key technologies for avionics systems integration on large passenger aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45 (5): 245- 287. | |
| 7 |
YANG H Y , SUN Y C . A combination method for integrated modular avionics safety analysis[J]. Aircraft Engineering and Aerospace Technology, 2023, 95 (2): 345- 357.
doi: 10.1108/AEAT-07-2021-0210 |
| 8 |
GASKA T , WATKIN C , CHEN Y . Integrated modular avionics-past, present, and future[J]. IEEE Aerospace and Electronic Systems Magazine, 2015, 30 (9): 12- 23.
doi: 10.1109/MAES.2015.150014 |
| 9 | 曹颖赛, 刘思峰, 方志耕, 等. 考虑共因故障的系统组成单元故障严重性测度模型[J]. 中国机械工程, 2019, 30 (7): 757- 762. |
| CAO Y S , LIU S F , FANG Z G , et al. Measurement model of fault severity for components considering common cause faults[J]. China Mechanical Engineering, 2019, 30 (7): 757- 762. | |
| 10 |
DUAN R X , HUANG S J , HE J J . Optimal fault diagnosis strategy for complex systems considering common cause failure under epistemic uncertainty[J]. Engineering Computations, 2021, 38 (9): 3417- 3437.
doi: 10.1108/EC-09-2020-0515 |
| 11 | GLB2547A-2012. 装备测试性工作通用要求[S]. 北京: 中国人民解放军总装备部, 2012. |
| GLB2547A-2012. General requirement for materiel testability program[S]. Beijing: General Armament Department of PLA, 2012. | |
| 12 |
ZENG Y N , SUN Y C , XU T , et al. A reliability evaluation method for complex systems based on the editable GSPN and adaptive Monte Carlo simulation[J]. Systems Engineering, 2024, 27 (3): 520- 531.
doi: 10.1002/sys.21736 |
| 13 |
LIN Z X , ZHOU J Z , SUN S S , et al. Petrinet model predictive control method for batch chemical systems[J]. Processes, 2024, 12 (3): 620- 635.
doi: 10.3390/pr12030620 |
| 14 | 苏永定. 装备系统测试性需求分析技术研究[D]. 长沙: 国防科学技术大学, 2011. |
| SU Y D. Research on testability requirement analysis for equipment[D]. Changsha: National University of Defense Technology, 2011. | |
| 15 |
FE I , NGUYEN T A , MARIO D M , et al. Energy-aware dynamic response and efficient consolidation strategies for disaster survivability of cloud microservices architecture[J]. Computing, 2024, 106 (8): 2737- 2783.
doi: 10.1007/s00607-024-01305-x |
| 16 |
EL M H , EL A N . Fluidization of stochastic Petri nets via continuous Petri nets: comparative study[J]. Journal of Control Automation and Electrical Systems, 2024, 35 (2): 401- 414.
doi: 10.1007/s40313-024-01066-0 |
| 17 | GAUTAM A , DHARMARAJA S . Adaptive joint call admission control scheme for LTE-A in mobile communication network and its performance analysis[J]. Opsearch, 2024, 162, 307- 321. |
| 18 |
ZENG Y N , SUN Y C . A reliability analysis technique for complex systems with retaining fuzzy information[J]. Quality and Reliability Engineering International, 2023, 39 (7): 2819- 2836.
doi: 10.1002/qre.3390 |
| 19 |
LIU L , PU Y T , LIU Z W , et al. Analysis of green closed-loop supply chain efficiency under generalized stochastic Petri nets[J]. Sustainability, 2023, 15 (17): 13181- 13197.
doi: 10.3390/su151713181 |
| 20 |
OUKAS N , BOULIF M . Sensor performance evaluation for long-lasting EH-WSNs by GSPN formulation, considering seasonal sunshine levels and dual standby strategy[J]. Arabian Journal for Science and Engineering, 2023, 48 (2): 1677- 1691.
doi: 10.1007/s13369-022-06970-8 |
| 21 | 王玮琦, 任晨宇, 陈黎洁, 等. 基于Petri网的全自动无人驾驶列车停站场景形式化建模与验证[J]. 铁道通信信号, 2024, 60 (3): 61- 68. |
| WANG W Q , REN C Y , CHEN L J , et al. Formal modeling and verification for fully automatic unattended train stopping scenario based on Petri net[J]. Railway Signalling & Communication, 2024, 60 (3): 61- 68. | |
| 22 | 孙亚平, 李宗吉, 张宁, 等. 基于广义随机Petri网的鱼雷系统级测试性参数确定方法[J]. 兵工学报, 2020, 41 (11): 2274- 2280. |
| SUN Y P , LI Z J , ZHANG N , et al. GSPN-based determination method of torpedo system level testability parameters[J]. Acta Armamentarii, 2020, 41 (11): 2274- 2280. | |
| 23 | 王小强, 韩斌. 基于GSPN的飞机测试性指标确定方法研究[J]. 计算机测量与控制, 2016, 24 (4): 13- 15. |
| WANG X Q , HAN B . Research on determination method for testability index of aircraft based on GSPN[J]. Computer Measurement & Control, 2016, 24 (4): 13- 15. | |
| 24 | 翟禹尧, 史贤俊, 吕佳朋. 基于广义随机Petri网的导弹系统测试性建模与指标评估方法研究[J]. 兵工学报, 2019, 40 (10): 2070- 2079. |
| ZHAI Y Y , SHI X J , LYU J P . Research on evaluation method for testability index and modeling of missile system based on GSPN[J]. Acta Armamentarii, 2019, 40 (10): 2070- 2079. | |
| 25 | 张宁, 林海华, 孙亚平, 等. 鱼雷装备测试维修Petri网模型与指标论证分析[J]. 兵工学报, 2023, 44 (3): 886- 894. |
| ZHANG N , LIN H H , SUN Y P , et al. Analysis of Petri net model and index demonstration for torpedo equipment testing and maintenance[J]. Acta Armamentarii, 2023, 44 (3): 886- 894. | |
| 26 | 牛建超, 方娜, 孙明明, 等. 考虑可用性和任务成功性的直升机机内测试需求建模和指标确定方法[J]. 环境技术, 2020, 38 (2): 147- 152. |
| NIU J C , FANG N , SUN M M , et al. Requirements modeling and testability index determination methods considering availability and mission success for helicopter build-in test[J]. Environmental Technology, 2020, 38 (2): 147- 152. | |
| 27 |
翟禹尧, 史贤俊, 吕佳朋, 等. 基于GSPN的导弹多层级测试性需求建模与指标评估[J]. 系统工程与电子技术, 2021, 43 (4): 970- 979.
doi: 10.12305/j.issn.1001-506X.2021.04.14 |
|
ZHAI Y Y , SHI X J , LYU J P , et al. Modeling and index evaluation of multi-level testability of missiles based on GSPN[J]. Systems Engineering and Electronics, 2021, 43 (4): 970- 979.
doi: 10.12305/j.issn.1001-506X.2021.04.14 |
|
| 28 | 白力舸, 王华茂, 闫金栋. 基于DSPN的航天器系统级可测试性指标确定方法[J]. 航天器工程, 2013, 22 (6): 127- 133. |
| BAI L G , WANG H M , YAN J D . Spacecraft system testability figure requirement determination method based on DSPN[J]. Spacecraft Engineering, 2013, 22 (6): 127- 133. | |
| 29 | 苏永定, 刘冠军, 邱静. 基于DSPN的多阶段任务系统测试性需求建模与分析[J]. 系统工程理论与实践, 2010, 30 (7): 1272- 1278. |
| SU Y D , LIU G J , QIU J . DSPN-based testability requirement modeling and analysis of phased-mission systems[J]. Systems Engineering-Theory & Practice, 2010, 30 (7): 1272- 1278. | |
| 30 | OUKAS N, BOULIF M. A colored Petri net to model message differences in energy harvesting WSNs[C]//Proc. of the 4th Conference on Computing Systems and Applications, 2020: 143-152. |
| 31 |
DECHSUPA C , VATANAWOOD W , THONGTAK A . Stepwise verification for the BPMN with timed and stochastic process using a colored generalized stochastic Petri net[J]. IEEE Access, 2022, 10, 42983- 43002.
doi: 10.1109/ACCESS.2022.3168000 |
| 32 |
HAN R B , WANG S H , LIU B , et al. A novel model-based dynamic analysis method for state correlation with IMA fault recovery[J]. IEEE Access, 2018, 6, 22094- 22107.
doi: 10.1109/ACCESS.2018.2822763 |
| 33 | GAUTIER V , PASCALE M , ERIC L . End-of-life decision making in circular economy using generalized colored stochastic Petri nets[J]. Autonomous Intelligent Systems, 2022, 2 (1): 32- 49. |
| 34 | LI X Y , LIU Y , LIN Y H , et al. A generalized Petri net-based modeling framework for service reliability evaluation and ma-nagement of cloud data centers[J]. Reliability Engineering & System Safety, 2021, 207, 107381- 107396. |
| 35 | LIU Y, LI X Y, LIN Y H, et al. A colored generalized stochastic Petri net simulation model for service reliability evaluation of active-active cloud data center based on its infrastructure[C]//Proc. of the 2nd International Conference on System Reliability and Safety, 2017: 51-56. |
| 36 | 李文敬, 元昌安, 闭应洲. Petri网并行化理论与并行算法[M]. 北京: 科学出版社, 2018. |
| LI W J , YUAN C A , BI Y Z . Parallel theory and algorithm of Petri nets[M]. Beijing: Science Press, 2018. |
| [1] | 王鹏, 刘嘉琛, 董磊, 赵长啸. 面向任务的民机DIMA动态重构策略[J]. 系统工程与电子技术, 2021, 43(6): 1618-1627. |
| [2] | 高泽海, 马存宝, 牛浩田. 综合模块化航电系统性能退化Lévy模型[J]. 系统工程与电子技术, 2021, 43(4): 1144-1152. |
| [3] | 高明哲, 许爱强, 张伟. 自适应建模相关向量机及其在电子系统状态预测中的应用[J]. 系统工程与电子技术, 2017, 39(8): 1898-1904. |
| [4] | 唐鑫, 杨建军, 严聪, 任宝祥. HPM武器电子毁伤效能评估方法[J]. 系统工程与电子技术, 2016, 38(10): 2317-2323. |
| [5] | 范庚,马登武,吴明辉,孟上. 电子系统状态时间序列预测的优化相关向量机方法[J]. 系统工程与电子技术, 2013, 35(9): 2011-2015. |
| [6] | 王广彦, 胡起伟, 杨云光. 损伤树分析方法中的关键问题研究[J]. Journal of Systems Engineering and Electronics, 2009, 31(10): 2547-2552. |
| [7] | 马成才, 顾晓东. 基于神经网络组与故障分级的故障诊断[J]. Journal of Systems Engineering and Electronics, 2009, 31(1): 225-228. |
| [8] | 马成才, 顾晓东. 基于神经网络组与故障分级的故障诊断[J]. Journal of Systems Engineering and Electronics, 2009, 31(01): 225-228. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||