范庚1,马登武1,吴明辉2, 孟上2
FAN Geng1, MA Deng-wu1, WU Ming-hui2, MENG Shang2
摘要:
针对电子系统状态时间序列的预测问题,提出一种基于量子粒子群优化(quantum behaved particle swarm optimization, QPSO)的相关向量机(relevance vector machine, RVM)方法。对电子系统状态时间序列进行相空间重构,建立了RVM回归预测模型;以交叉验证误差最小作为优化目标,将RVM核参数表示为量子空间中的粒子位置,采用QPSO算法实现RVM模型参数的自动优化选择。雷达发射机状态时间序列预测实例表明,相比已有方法,所提方法具有更高的预测精度;同时,能够输出预测值的置信区间,有利于对电子系统未来健康状况做出更加可靠的判断。