系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (6): 1768-1777.doi: 10.12305/j.issn.1001-506X.2025.06.05
何山红, 江文豪, 陈满坤, 韩贤良
收稿日期:
2024-05-06
出版日期:
2025-06-25
发布日期:
2025-07-09
通讯作者:
何山红
作者简介:
何山红(1973—), 男, 教授, 硕士, 主要研究方向为大型反射面天线设计、阵列天线设计、阵列信号处理和电磁场计算基金资助:
Shanhong HE, Wenhao JIANG, Mankun CHEN, Xianliang HAN
Received:
2024-05-06
Online:
2025-06-25
Published:
2025-07-09
Contact:
Shanhong HE
摘要:
低副瓣, 尤其是超低副瓣一直是天线设计中的难题。对于毫米波天线, 还有可能存在加工困难、加工精度难以保障和损耗大等问题。论文从天线实现方式、馈源、反射面结构及配置等方面进行特殊设计, 研制一种可以同时工作于w(51.26~58.0 GHz)和Ka频段(22.24~31.4 GHz)的反射面天线, 实测副瓣电平在w和Ka频段分别小于-50 dB和-35 dB, 中心频率的天线增益分别达到40.1 dBi和35.0 dBi。给出了设计原理和设计过程, 提供了仿真与实测结果, 并对结果进行分析和对比, 两者的基本吻合证明了设计过程的正确性和设计结果的实用性。
中图分类号:
何山红, 江文豪, 陈满坤, 韩贤良. 双频段、高增益、超低副瓣毫米波面天线[J]. 系统工程与电子技术, 2025, 47(6): 1768-1777.
Shanhong HE, Wenhao JIANG, Mankun CHEN, Xianliang HAN. Dual-frequency band millimeter reflector antenna with high gain and ultra-low sidelobe level[J]. Systems Engineering and Electronics, 2025, 47(6): 1768-1777.
表1
测量和仿真的反射面性能"
频带 | 频率/GHz | 增益/dBi | 半功率波束宽度/(°) | 副瓣/dB | 天线效率/% |
Ka | 22.24 | 33.0 / 34.3 | 4.0 / 4.0 | < -35 | 57.5 / 77.6 |
26.82 | 35.0 / 35.8 | 3.8 / 3.8 | < -35 | 59.3 / 71.0 | |
31.40 | 35.2 / 36.8 | 3.3 / 3.3 | < -35 | 43.2 / 60.9 | |
w | 51.26 | 39.3 / 40.1 | 2.0 / 2.0 | < -50 | 36.3 / 43.6 |
54.60 | 40.1 / 40.7 | 2.0 / 2.0 | < -50 | 37.3 / 42.8 | |
58.00 | 40.5 / 40.9 | 1.8 / 1.8 | < -50 | 39.0 / 39.0 |
11 | NAGASAKA M, KAMEI M. Study of dual-band horn antennas for offset parabolic reflector antenna in 12-and 21-GHz-band satellite broadcasting reception[C]//Proc. of the IEEE In ternational Workshop on Antenna Technology, 2024: 194-197. |
12 | SUSHKO O, DUBROVKA R, PILTYAY S, et al. Highperformance C/Ku band dual polarization feed system for 25 meters cassegrain reflector antenna[C]//Proc. of the 51st European Microwave Conference, 2022: 530-533. |
13 | RAO S, VENEZIA P, SCUPIN J, et al. Quad-band petal reflector antenna for ground communications[C]//Proc. of the IEEE Wireless Antenna and Microwave Symposium, 2022. |
14 | MISTRY K K, KUSHWAHA M, FELLOWS D, et al. A dual- band deployable cassegrain reflector antenna for space applications[C]//Proc. of the 15th European Conference on Antennas and Propagation, 2021. |
15 | GRECO F, AMENDOLA G, BOCCIA L, et al. A dual band hat feed for reflector antennas in Q-V band[C]//Proc. of the 10th European Conference on Antennas and Propagation, 2016. |
16 |
QU S W , LU S L , MA C , et al. K/Ka dual-band reflectarray subreflector for ring-focus reflector antenna[J]. IEEE Anten nas and Wireless Propagation Letters, 2019, 18 (8): 1567- 1571.
doi: 10.1109/LAWP.2019.2923288 |
17 | ZHOU Z C, TIAN K, NIU Y. An FSS integrated with reflector antenna[C]//Proc. of the 9th Asia-Pacific Conference on Antennas and Propagation, 2020. |
18 | PALVIG M F, ZHOU M. Design of a modulated FSS subreflector for a dual-reflector system[C]//Proc. of the 15th European Conference on Antennas and Propagation, 2021. |
19 | ROY S S, SEKHAR T N, PADMAVATHY C S, et al. Design of double layers dichroic subreflector for S and X band Cassegrain antenna[C]//Proc. of the IEEE Indian Antenna Week, 2016: 47-50. |
20 | 刘嘉俊. 基于FSS副反射面的多频段反射面天线设计[D]. 西安: 西安电子科技大学, 2018. |
LIU J J. Design of a multi-band reflector antenna based on FSS sub-reflector[D]. Xi'an: Xidian University, 2018. | |
21 | 韩可. 用于Ka/w双波段面天线的FSS设计理论与技术研究[D]. 南京: 南京信息工程大学, 2018. |
HAN K. Design theory and technology research of the FSS for Ka/w dual-band surface antennas[D]. Nanjing: Nanjing University of Information Science and Technology, 2018. | |
22 | GUO S R, WANG Y, ZHU M. Design of FSS sub-reflector based dual band cassegrain antenna[C]//Proc. of the IEEE I nternational Conference on Computational Electromagnetics, 2024. |
23 | SADHUKHAN G, CHOWDHURY S, CHAKRABORTY A, et al. Dual circularly polarized shared aperture reflector antenna for S/Ka-band telemetry tracking[C]//Proc. of the 3rd International Conference on Range Technology, 2023. |
24 | 李向芹. 天线副瓣对辐射计的影响及低副瓣天线设计[D]. 南京: 南京理工大学, 2013. |
LI X Q. Effect of antenna sidelobe on radiome ter and low sidelobe antenna design[D]. Nanjing: Nanjing University of Science and Technology, 2013. | |
25 | 何山红. 反射面天线理论及实用CAD程序集[M]. 北京: 电子工业出版社, 2016. |
HE S H . Theories and practical CAD programs for reflector antennas[M]. Beijing: Publishing House of Electronics Industry, 2016. | |
26 | AZIZ O, AHMAD H, ABDULLAH, et al. Double square loop single layer frequency selective surfaces (FSS) for wideband absorption[C]//Proc. of the IEEE International Symposium on Antennas and Propagation, 2023. |
27 | ZAHRA H, RAFIQUE U, ABBAS S M, et al. Highly stable frequency selective surface with bandstop characteristics for EMI shielding for 28 GHz applications[C]//Proc. of the IEEE Wireless Antenna and Microwave Symposium, 2023. |
28 |
THULASIRAMAN J , ALEX Z C . Ultrathin and conformal frequency selective surfaces bandpass filter to eliminate the 5G bands on radio altimeters[J]. Microwave and Optical Technology Letters, 2024, 66 (1): e34001.
doi: 10.1002/mop.34001 |
29 |
PRASAD P , SINGH S N , KUMAR A . Lightweight ultra-wideband antenna array equipped with thin frequency selective surface for high-gain applications[J]. Journal of Electrical Engineering, 2022, 73 (6): 396- 404.
doi: 10.2478/jee-2022-0054 |
30 |
HAKIM M L , ALAM T , ISLAM M T . Polarization-insensitive and oblique incident angle stable miniaturized conformal FSS for 28/38 GHz mm-wave band 5G EMI shielding applications[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22 (11): 2644- 2648.
doi: 10.1109/LAWP.2023.3284860 |
1 |
MOHAMMAD Z , CHRYSLER A M . Airborne reflector-based ground penetrating radar for environmental and archaeological studies[J]. IEEE Open Journal of Antennas and Propagation, 2023, 4, 748- 753.
doi: 10.1109/OJAP.2023.3295849 |
2 | YUAN Y N, JI L, WANG Z Y, et al. Design of a high precision spaceborne millimeter wave SAR corner reflector[C]//Proc. of the 3rd China International SAR Symposium, 2022. |
3 |
MUPPALA A V , SARABANDI K . A dynamic dual reflector antenna for 4-D synthetic aperture radar imaging achieving a 0.4° pencil beam at 77 GHz[J]. IEEE Trans.on Antennas and Propa-gation, 2022, 70 (12): 11301- 11312.
doi: 10.1109/TAP.2022.3209276 |
4 | KOOHI GHAMSARI M H, AHMADI-BOROUJENI M, BABANEJAD S. A confocal ellipsoidal reflector system for millimeter-wave applications[C]//Proc. of the 6th International Conference on Millimeter-Wave and Terahertz Technologies, 2022. |
5 |
LIN C W , ANTHONY G . A realistic coaxial feed for cascaded cylindrical metasurfaces[J]. IEEE Antennas and Wireless Propa-gation Letters, 2023, 22 (11): 2624- 2628.
doi: 10.1109/LAWP.2023.3295753 |
6 | LEMBERG K V, BOEV N M, KANTYSHEV A V, et al. Demountable K/Q band coaxial feed for cassegrain antenna[C]// Proc. of the IEEE International Multi-Conference on Engineering, Computer and Information Sciences, 2022: 1150-1153. |
7 | LU S L, QU S W. Low-profile high-gain reflector antenna feed by Ku/E dual-band feed[C]//Proc. of the IEEE International Symposium on Antennas and Propagation, 2023. |
8 |
NAISHADHAM K , LI R L , YANG L , et al. A shared-aperture dual-band planar array with self-similar printed folded dipoles[J]. IEEE Trans.on Antennas and Propagation, 2013, 61 (2): 606- 613.
doi: 10.1109/TAP.2012.2216491 |
9 | BANERJEE R, SHARMA S K, CAPOLINO F. A shared aperture Ku-/Ka-band feed source for a high gain fixed beam offset reflector antenna[C]//Proc. of the IEEE Conference on Antenna Measurements and Applications, 2022. |
10 | WANG H J. Compact multi-frequency feed horn for radiome-ter[C]// Proc. of the IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2021: 1779-1780. |
31 | 黄敏杰, 吕明云, 黄俊, 等. 单元形状的微小改变对频率选择表面电性能的影响[J]. 系统工程与电子技术, 2009, 31 (7): 1611-1614, 1671. |
HUANG M J , LYU M Y , HUANG J , et al. The effect of small changes in cell shape on the electrical properties of frequency-selective surfaces[J]. Systems Engineering and Electronics, 2009, 31 (7): 1611-1614, 1671. | |
32 | 朱家成. 基于HFSS的频率选择表面设计与优化[D]. 兰州: 兰州理工大学, 2022. |
ZHU J C. HFSS-based frequency selective surface design and optimization[D]. Lanzhou: Lanzhou University of Technology, 2022. | |
33 | BHATTACHARYA A , DASGUPTA B , JYOTI R . A simple frequency selective surface structure for performance improve ment of ultra-wideband antenna in frequency and time domains[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31 (11): 1- 13. |
34 |
TONG J Y , ZHONG W Y , SHI J , et al. 22/43 GHz low-insertion-loss dual-polarized multi-layer bandpass frequency selective surfaces for millimeter astronomy[J]. Physica Scripta, 2024, 99 (2): 025021.
doi: 10.1088/1402-4896/ad1e46 |
35 |
ESCUDEROS D S , ROCHER M F , HERRUZO J I H , et al. Grating lobes reduction using a multilayer frequency selective surface on a dual-polarized aperture array antenna in Ka-band[J]. IEEE Access, 2020, 8, 104977- 104984.
doi: 10.1109/ACCESS.2020.3000069 |
36 | WANG J , CHEN X W , MA R B , et al. A miniaturized transmission/absorption integrated frequency selection surface with ultra-wide absorption band[J]. International Journal of RF and Microwave Compute-Aided Engineering, 2022, 32 (7): 1- 11. |
[1] | 姜智杰, 宋恒, 胡楠, 段兰茜, 曹平. 隧道环境毫米波雷达目标识别与分类算法[J]. 系统工程与电子技术, 2025, 47(5): 1453-1460. |
[2] | 王奇, 王子瑶, 郑峻峰. 考虑多源噪声及信号传输的雷达系统仿真模型[J]. 系统工程与电子技术, 2025, 47(3): 768-778. |
[3] | 邵永琪, 杨丽花, 常澳, 任露露. RIS辅助的OFDM系统中时变信道估计方法[J]. 系统工程与电子技术, 2025, 47(1): 324-331. |
[4] | 张明龙, 吴雨林, 魏文强, 沈园杰, 郭世盛, 崔国龙. 基于稀疏矩阵填充的级联毫米波雷达高分辨测角方法[J]. 系统工程与电子技术, 2024, 46(8): 2629-2640. |
[5] | 张冬, 邢福逸, 徐允鹤, 钱鹏. 基于双模式切换的机载惯性/雷达组合导航方法[J]. 系统工程与电子技术, 2024, 46(8): 2770-2778. |
[6] | 刘刚, 李雨航, 杨庆鑫, 郭漪. 基于压缩感知的智能反射面信道估计[J]. 系统工程与电子技术, 2024, 46(7): 2490-2497. |
[7] | 马露洁, 梁彦, 李飞. 基于级联角度的AIRS辅助大规模MIMO系统波束跟踪方案[J]. 系统工程与电子技术, 2024, 46(7): 2515-2524. |
[8] | 张春杰, 王冠博, 陈奇, 邓志安. 基于纯自注意力机制的毫米波雷达手势识别[J]. 系统工程与电子技术, 2024, 46(3): 859-867. |
[9] | 王俊智, 仲伟志, 肖丽君, 王鑫, 朱秋明, 林志鹏. 基于迁移学习的室内波束选择优化方法[J]. 系统工程与电子技术, 2024, 46(3): 1109-1115. |
[10] | 王汝言, 王康, 崔亚平, 何鹏, 吴大鹏. IRS辅助的车联网相移设计和信道对齐策略[J]. 系统工程与电子技术, 2024, 46(2): 761-769. |
[11] | 蔡嘉怡, 初萍, 庄伦涛, 阳召成. 基于空间属性特征的毫米波雷达身体干扰识别[J]. 系统工程与电子技术, 2024, 46(10): 3365-3374. |
[12] | 郑晶月, 吴佩仑, 陈家辉, 郭世盛, 崔国龙. 车载毫米波雷达多径假目标分析与消除方法[J]. 系统工程与电子技术, 2024, 46(1): 88-96. |
[13] | 李晓辉, 李欢洋, 吕思婷, 石明利. 毫米波通感一体化中的混合波束赋形算法[J]. 系统工程与电子技术, 2023, 45(5): 1512-1517. |
[14] | 张俊杰, 仲伟志, 张璐璐, 王俊智, 朱秋明. 基于IUPF算法的三维无人机毫米波波束跟踪[J]. 系统工程与电子技术, 2023, 45(1): 257-263. |
[15] | 陈凯柏, 高敏, 周晓东, 毕军建, 王毅. 毫米波探测器的超宽带耦合特性[J]. 系统工程与电子技术, 2022, 44(12): 3641-3651. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||