

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (6): 1757-1767.doi: 10.12305/j.issn.1001-506X.2025.06.04
蔡伟, 狄星雨, 蒋昕昊, 王鑫, 高蔚洁
收稿日期:2024-03-30
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
狄星雨
作者简介:蔡伟(1974—),男,教授,博士研究生导师,博士,主要研究方向为深度学习、光电防护基金资助:Wei CAI, Xingyu DI, Xinhao JIANG, Xin WANG, Weijie GAO
Received:2024-03-30
Online:2025-06-25
Published:2025-07-09
Contact:
Xingyu DI
摘要:
现有的物理对抗攻击方法大多数局限于平面补丁, 即使是可以执行多角度攻击的对抗样本也存在鲁棒性不足、泛化性不够、在数字域和物理域的攻击效果差距较大等问题。基于此, 提出一种白盒车辆对抗纹理生成方法: 在训练数据集中添加不同亮度和对比度的图像, 并在每一代训练后生成的纹理上添加模拟现实环境的噪声, 利用贝叶斯优化算法来优化不同损失项权重, 最后添加正则化项减小模型过拟合。针对现有数据集模型和掩码无法完全重合的问题, 提出一种修复方法用于修复图像来缩小数字仿真和现实拍摄的差距。通过数字仿真实验和物理世界实验表明, 与现有对抗纹理生成算法相比, 此算法实现了更高的平均攻击成功率和更低的平均精确率。
中图分类号:
蔡伟, 狄星雨, 蒋昕昊, 王鑫, 高蔚洁. 基于数据增强的车辆鲁棒对抗纹理生成[J]. 系统工程与电子技术, 2025, 47(6): 1757-1767.
Wei CAI, Xingyu DI, Xinhao JIANG, Xin WANG, Weijie GAO. Vehicle robust adversarial texture generation based on data augmentation[J]. Systems Engineering and Electronics, 2025, 47(6): 1757-1767.
| 1 |
ZOU Z X , CHEN K Y , SHI Z W , et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111 (3): 257- 276.
doi: 10.1109/JPROC.2023.3238524 |
| 2 | 汪欣欣, 陈晶, 何琨, 等. 面向目标检测的对抗攻击与防御综述[J]. 通信学报, 2023, 44 (11): 260- 277. |
| WANG X X , CHEN J , HE K , et al. Survey on adversarial attacks and defenses for object detection[J]. Journal on Communications, 2023, 44 (11): 260- 277. | |
| 3 |
GUESMI A , HANIF M A , OUNI B , et al. Physical adversarial attacks for camera-based smart systems: current trends, catego rization, applications, research challenges, and future outlook[J]. IEEE Access, 2023, 11, 109617- 109668.
doi: 10.1109/ACCESS.2023.3321118 |
| 4 |
WANG Y J , LYU H R , KUANG X H , et al. Towards a physical world adversarial patch for blinding object detection models[J]. Information Sciences, 2021, 556, 459- 471.
doi: 10.1016/j.ins.2020.08.087 |
| 5 | ZHU X P, LI X, LI J M, et al. Fooling thermal infrared pedes trian detectors in real world using small bulbs[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 3616-3624. |
| 6 | HOORY S, SHAPIRA T, SHABTAI A, et al. Dynamic adversarial patch for evading object detection models[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/2010.13070v1.pdf. |
| 7 | HU Z H, HUANG S Y, ZHU X P, et al. Adversarial texture for fooling person detectors in the physical world[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 13307-13316. |
| 8 | ZHANG Y, FOROOSH H, DAVID P, et al. CAMOU: learning physical vehicle camouflages to adversarially attack detectors in the wild[C]//Proc. of the International Conference on Learning Representations, 2018. |
| 9 | WU T, NING X F, LI W S, et al. Physical adversarial attack on vehicle detector in the carla simulator[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/2007.16118.pdf. |
| 10 | DUAN Y X, CHEN J L, ZHOU X Y, et al. Learning coated adversarial camouflages for object detectors[C]//Proc. of the 31st International Joint Conference on Artificial Intelligence, 2022: 891-897. |
| 11 | WANG J K, LIU A S, YIN Z X, et al. Dual attention suppres sion attack: generate adversarial camouflage in physical world[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8565-8574. |
| 12 | WANG D H, JIANG T S, SUN J L, et al. FCA: learning a 3D full-coverage vehicle camouflage for multi-view physical adversarial attack[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2022. |
| 13 | SURYANTO N, KIM Y, KANG H, et al. DTA: physical camouflage attacks using differentiable transformation network[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 15305-15314. |
| 14 | SURYANTO N, KIM Y, LARASATI H T, et al. Active: towards highly transferable 3D physical camouflage for universal and robust vehicle evasion[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2023: 4305-4314. |
| 15 | ZHOU J W, LYU L Y, HE D J, et al. RAUCA: a novel phy-sical adversarial attack on vehicle detectors via robust and accurate camouflage generation[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/2402.15853.pdf. |
| 16 | GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[C]//Proc. of the International Conference on Learning Representations, 2014. |
| 17 | MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[C]//Proc. of the International Conference on Learning Representations, 2018. |
| 18 | CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]//Proc. of the IEEE Symposium on Security and Privacy, 2017: 39-57. |
| 19 | CHOW K H, LIU L, GURSOY M E, et al. TOG: targeted adversarial objectness gradient attacks on real-time object detection systems[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/2004.04320.pdf. |
| 20 | WANG D R , LI C R , WEN S , et al. Daedalus: breaking non- maximum suppression in object detection via adversarial exam p-les[J]. IEEE Trans.on Cybernetics, 2021, 52 (8): 7427- 7440. |
| 21 | 叶子鹏, 夏雯宇, 孙志尧, 等. 从传统渲染到可微渲染: 基本原理、方法和应用[J]. 中国科学: 信息科学, 2021, 51 (7): 1043- 1067. |
| YE Z P , XIA W Y , SUN Z Y , et al. From traditional rendering to differentiable rendering: theories, methods and applications[J]. Scientia Sinica Informationis, 2021, 51 (7): 1043- 1067. | |
| 22 | CHEN W, ZHANG Y S, LI Z H, et al. MFA: multi-layer feature-aware attack for object detection[C]//Proc. of the 39th Conference on Uncertainty in Artificial Intelligence, 2023. |
| 23 |
WANG H , QIN J J , HUANG Y X , et al. SC-PCA: shape constraint physical camouflage attack against vehicle detection[J]. Journal of Signal Processing Systems, 2023, 95 (12): 1405- 1424.
doi: 10.1007/s11265-023-01890-8 |
| 24 | KATO H, USHIKU Y, HARADA T. Neural 3D mesh renderer[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3907-3916. |
| 25 | LI Y, TAN W Y, ZHAO C X, et al. Flexible physical camouflage generation based on a differential approach[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/2402.13575.pdf. |
| 26 | MENDES P, ROMANO P, GARLAN D. Hyper-parameter tuning for adversarially robust models[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/2304.02497.pdf. |
| 27 | WU J , CHEN X Y , ZHANG H , et al. Hyperparameter optimization for machine learning models based on Bayesian optimization[J]. Journal of Electronic Science and Technology, 2019, 17 (1): 26- 40. |
| 28 | WU Z, LIM S N, DAVIS L S, et al. Making an invisibility cloak: real world adversarial attacks on object detectors[C]//Proc. of the 16th European Conference, 2020. |
| 29 | JOCHER G. Yolov5. [EB/OL]. [2024-02-28]. https://github.com/ultralytics/yolov5. |
| 30 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc. of the 14th European Confe-rence, 2016: 21-37. |
| 31 | REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans. on Pattern Analysis And Machine Intelligence, 2016, 39 (6): 1137- 1149. |
| 32 | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proc. of the European Conference on Computer Vision, 2020: 213-229. |
| 33 | WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/2402.13616v2.pdf. |
| 34 | REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/1804.02767.pdf. |
| [1] | 王一博, 张乐飞, 李新德. 基于多任务学习的建筑毁伤评估方法[J]. 系统工程与电子技术, 2024, 46(10): 3375-3382. |
| [2] | 吴钇达, 王彩云, 王佳宁, 李晓飞. 基于ISVM-DS的红外多传感器融合识别方法[J]. 系统工程与电子技术, 2024, 46(5): 1555-1560. |
| [3] | 王慧赢, 王春平, 付强, 韩子硕, 张冬冬. 基于图像特征的红外与低照度图像融合[J]. 系统工程与电子技术, 2023, 45(8): 2395-2404. |
| [4] | 汪萌, 诸兵. 不确定性建模在2D和3D目标检测中的应用[J]. 系统工程与电子技术, 2023, 45(8): 2370-2376. |
| [5] | 孙景荣, 陈哲哲, 谢林昌, 杜梦欣, 宋诗斌. 基于图像天空区域分割的去雾算法[J]. 系统工程与电子技术, 2023, 45(6): 1606-1615. |
| [6] | 陈丽, 方梓涵, 梅立泉. 基于GAN的直扩信号生成算法[J]. 系统工程与电子技术, 2023, 45(5): 1544-1552. |
| [7] | 徐义飞, 李晓冬, 李新德. 一种基于定位和非对称补偿的伪装目标分割方法[J]. 系统工程与电子技术, 2022, 44(9): 2707-2715. |
| [8] | 范加利, 田少兵, 黄葵, 朱兴动. 基于Faster R-CNN的航母舰面多尺度目标检测算法[J]. 系统工程与电子技术, 2022, 44(1): 40-46. |
| [9] | 吕鑫, 慕晓冬, 张钧. 基于改进麻雀搜索算法的多阈值图像分割[J]. 系统工程与电子技术, 2021, 43(2): 318-327. |
| [10] | 罗钧, 刘建强, 庞亚男. 基于邻域搜索JADE的二维Otsu多阈值图像分割[J]. 系统工程与电子技术, 2020, 42(10): 2164-2171. |
| [11] | 花思齐, 赵伟, 刘建业. 基于改进滤波器和图像多尺度变换的背景抑制算法[J]. 系统工程与电子技术, 2020, 42(8): 1679-1684. |
| [12] | 王晓龙, 刘海颖, 王景琪. 基于分层SLAM的空地多智能体协同导航[J]. 系统工程与电子技术, 2020, 42(1): 166-171. |
| [13] | 康牧, 王宝树. 一种基于弹性模型的图像缩小算法[J]. Journal of Systems Engineering and Electronics, 2009, 31(9): 2208-2211. |
| [14] | 陈洪波, 汤井田, 陈真诚. 同场景多幅图像斑纹噪声抑制方法[J]. Journal of Systems Engineering and Electronics, 2009, 31(5): 1051-1054. |
| [15] | 陈尚锋, 肖山竹, 卢焕章. 图像序列弱小目标能量积累检测研究[J]. Journal of Systems Engineering and Electronics, 2009, 31(2): 288-291. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||