1 |
ZOU Z X , CHEN K Y , SHI Z W , et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111 (3): 257- 276.
doi: 10.1109/JPROC.2023.3238524
|
2 |
汪欣欣, 陈晶, 何琨, 等. 面向目标检测的对抗攻击与防御综述[J]. 通信学报, 2023, 44 (11): 260- 277.
|
|
WANG X X , CHEN J , HE K , et al. Survey on adversarial attacks and defenses for object detection[J]. Journal on Communications, 2023, 44 (11): 260- 277.
|
3 |
GUESMI A , HANIF M A , OUNI B , et al. Physical adversarial attacks for camera-based smart systems: current trends, catego rization, applications, research challenges, and future outlook[J]. IEEE Access, 2023, 11, 109617- 109668.
doi: 10.1109/ACCESS.2023.3321118
|
4 |
WANG Y J , LYU H R , KUANG X H , et al. Towards a physical world adversarial patch for blinding object detection models[J]. Information Sciences, 2021, 556, 459- 471.
doi: 10.1016/j.ins.2020.08.087
|
5 |
ZHU X P, LI X, LI J M, et al. Fooling thermal infrared pedes trian detectors in real world using small bulbs[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 3616-3624.
|
6 |
HOORY S, SHAPIRA T, SHABTAI A, et al. Dynamic adversarial patch for evading object detection models[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/2010.13070v1.pdf.
|
7 |
HU Z H, HUANG S Y, ZHU X P, et al. Adversarial texture for fooling person detectors in the physical world[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 13307-13316.
|
8 |
ZHANG Y, FOROOSH H, DAVID P, et al. CAMOU: learning physical vehicle camouflages to adversarially attack detectors in the wild[C]//Proc. of the International Conference on Learning Representations, 2018.
|
9 |
WU T, NING X F, LI W S, et al. Physical adversarial attack on vehicle detector in the carla simulator[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/2007.16118.pdf.
|
10 |
DUAN Y X, CHEN J L, ZHOU X Y, et al. Learning coated adversarial camouflages for object detectors[C]//Proc. of the 31st International Joint Conference on Artificial Intelligence, 2022: 891-897.
|
11 |
WANG J K, LIU A S, YIN Z X, et al. Dual attention suppres sion attack: generate adversarial camouflage in physical world[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8565-8574.
|
12 |
WANG D H, JIANG T S, SUN J L, et al. FCA: learning a 3D full-coverage vehicle camouflage for multi-view physical adversarial attack[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2022.
|
13 |
SURYANTO N, KIM Y, KANG H, et al. DTA: physical camouflage attacks using differentiable transformation network[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 15305-15314.
|
14 |
SURYANTO N, KIM Y, LARASATI H T, et al. Active: towards highly transferable 3D physical camouflage for universal and robust vehicle evasion[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2023: 4305-4314.
|
15 |
ZHOU J W, LYU L Y, HE D J, et al. RAUCA: a novel phy-sical adversarial attack on vehicle detectors via robust and accurate camouflage generation[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/2402.15853.pdf.
|
16 |
GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[C]//Proc. of the International Conference on Learning Representations, 2014.
|
17 |
MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[C]//Proc. of the International Conference on Learning Representations, 2018.
|
18 |
CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]//Proc. of the IEEE Symposium on Security and Privacy, 2017: 39-57.
|
19 |
CHOW K H, LIU L, GURSOY M E, et al. TOG: targeted adversarial objectness gradient attacks on real-time object detection systems[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/2004.04320.pdf.
|
20 |
WANG D R , LI C R , WEN S , et al. Daedalus: breaking non- maximum suppression in object detection via adversarial exam p-les[J]. IEEE Trans.on Cybernetics, 2021, 52 (8): 7427- 7440.
|
21 |
叶子鹏, 夏雯宇, 孙志尧, 等. 从传统渲染到可微渲染: 基本原理、方法和应用[J]. 中国科学: 信息科学, 2021, 51 (7): 1043- 1067.
|
|
YE Z P , XIA W Y , SUN Z Y , et al. From traditional rendering to differentiable rendering: theories, methods and applications[J]. Scientia Sinica Informationis, 2021, 51 (7): 1043- 1067.
|
22 |
CHEN W, ZHANG Y S, LI Z H, et al. MFA: multi-layer feature-aware attack for object detection[C]//Proc. of the 39th Conference on Uncertainty in Artificial Intelligence, 2023.
|
23 |
WANG H , QIN J J , HUANG Y X , et al. SC-PCA: shape constraint physical camouflage attack against vehicle detection[J]. Journal of Signal Processing Systems, 2023, 95 (12): 1405- 1424.
doi: 10.1007/s11265-023-01890-8
|
24 |
KATO H, USHIKU Y, HARADA T. Neural 3D mesh renderer[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3907-3916.
|
25 |
LI Y, TAN W Y, ZHAO C X, et al. Flexible physical camouflage generation based on a differential approach[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/2402.13575.pdf.
|
26 |
MENDES P, ROMANO P, GARLAN D. Hyper-parameter tuning for adversarially robust models[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/2304.02497.pdf.
|
27 |
WU J , CHEN X Y , ZHANG H , et al. Hyperparameter optimization for machine learning models based on Bayesian optimization[J]. Journal of Electronic Science and Technology, 2019, 17 (1): 26- 40.
|
28 |
WU Z, LIM S N, DAVIS L S, et al. Making an invisibility cloak: real world adversarial attacks on object detectors[C]//Proc. of the 16th European Conference, 2020.
|
29 |
JOCHER G. Yolov5. [EB/OL]. [2024-02-28]. https://github.com/ultralytics/yolov5.
|
30 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc. of the 14th European Confe-rence, 2016: 21-37.
|
31 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans. on Pattern Analysis And Machine Intelligence, 2016, 39 (6): 1137- 1149.
|
32 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proc. of the European Conference on Computer Vision, 2020: 213-229.
|
33 |
WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/2402.13616v2.pdf.
|
34 |
REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. [2024-02-28]. https://arxiv.org/pdf/1804.02767.pdf.
|