系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (6): 1757-1767.doi: 10.12305/j.issn.1001-506X.2025.06.04

• 电子技术 • 上一篇    下一篇

基于数据增强的车辆鲁棒对抗纹理生成

蔡伟, 狄星雨, 蒋昕昊, 王鑫, 高蔚洁   

  1. 火箭军工程大学导弹工程学院, 陕西 西安 710025
  • 收稿日期:2024-03-30 出版日期:2025-06-25 发布日期:2025-07-09
  • 通讯作者: 狄星雨
  • 作者简介:蔡伟(1974—),男,教授,博士研究生导师,博士,主要研究方向为深度学习、光电防护
    狄星雨(1998—),女,博士研究生,主要研究方向为深度学习、对抗攻击
    蒋昕昊(1997—),男,博士研究生,主要研究方向为深度学习、目标检测
    王鑫(1999—),男,博士研究生,主要研究方向为深度学习、目标检测
    高蔚洁(2000—),女,硕士研究生,主要研究方向为深度学习、目标检测
  • 基金资助:
    科技创新人才工程自主科研项目

Vehicle robust adversarial texture generation based on data augmentation

Wei CAI, Xingyu DI, Xinhao JIANG, Xin WANG, Weijie GAO   

  1. Missile Engineering Institute, Rocket Force University of Engineering, Xi'an 710025, China
  • Received:2024-03-30 Online:2025-06-25 Published:2025-07-09
  • Contact: Xingyu DI

摘要:

现有的物理对抗攻击方法大多数局限于平面补丁, 即使是可以执行多角度攻击的对抗样本也存在鲁棒性不足、泛化性不够、在数字域和物理域的攻击效果差距较大等问题。基于此, 提出一种白盒车辆对抗纹理生成方法: 在训练数据集中添加不同亮度和对比度的图像, 并在每一代训练后生成的纹理上添加模拟现实环境的噪声, 利用贝叶斯优化算法来优化不同损失项权重, 最后添加正则化项减小模型过拟合。针对现有数据集模型和掩码无法完全重合的问题, 提出一种修复方法用于修复图像来缩小数字仿真和现实拍摄的差距。通过数字仿真实验和物理世界实验表明, 与现有对抗纹理生成算法相比, 此算法实现了更高的平均攻击成功率和更低的平均精确率。

关键词: 对抗攻击, 物理攻击, 纹理生成, 白盒攻击

Abstract:

Most of the existing physical adversarial attack methods are limited to planar patches, and even the adversarial samples that can perform multi-angle attacks suffer from insufficient robustness, insufficient generalization, and a large gap between the attack effects in the digital and physical domains. A white-box vehicle adversarial texture generation method is proposed based on this: add images with different brightness and contrast in the training dataset, and add noise that simulates the real environment on the texture generated after each training epoch, use the Bayesian optimization algorithm to compute the weights of the different loss terms, and finally add a regularization term to reduce the overfitting of the model. In response to the problem that the model and the target of the existing dataset cannot be completely overlapped, an inpainting method is proposed for repairing images to reduce the gap between the digital simulation and the real shot. Digital simulation experiments and physical world experiments show that the proposed algorithm achieves a higher attack success rate and lower precision rate compared to existing adversarial texture generation algorithms.

Key words: adversarial attack, physical attack, texture generation, white-box attack

中图分类号: