系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (7): 2490-2497.doi: 10.12305/j.issn.1001-506X.2024.07.31
• 通信与网络 • 上一篇
刘刚, 李雨航, 杨庆鑫, 郭漪
收稿日期:
2023-03-02
出版日期:
2024-06-28
发布日期:
2024-07-02
通讯作者:
郭漪
作者简介:
刘刚(1977—),男,教授,博士,主要研究方向为宽带无线传输技术基金资助:
Gang LIU, Yuhang LI, Qingxin YANG, Yi GUO
Received:
2023-03-02
Online:
2024-06-28
Published:
2024-07-02
Contact:
Yi GUO
摘要:
针对智能反射面(intelligent reflecting surface, IRS)辅助的通信系统中稀疏度未知信道的估计问题, 提出了一种基于压缩感知的稀疏自适应信道估计算法。首先, 研究了正交匹配追踪(orthogonal matching pursuit, OMP)算法下信道的残差l2范数与输入的信道稀疏度之间的关系, 得出了OMP算法恢复稀疏度未知信道的迭代终止条件;然后, 提出了一种二阶段稀疏自适应信道估计算法, 在第一阶段估计信道稀疏度, 在第二阶段增加或删减支撑集原子, 最终使得恢复的信道向量误差最小。仿真结果表明, 与经典的最小二乘法、已知稀疏度的OMP算法、稀疏自适应匹配追踪(sparsity adaptive matching pursuit, SAMP)算法相比, 提出的算法性能良好, 鲁棒性强。
中图分类号:
刘刚, 李雨航, 杨庆鑫, 郭漪. 基于压缩感知的智能反射面信道估计[J]. 系统工程与电子技术, 2024, 46(7): 2490-2497.
Gang LIU, Yuhang LI, Qingxin YANG, Yi GUO. Channel estimation on intelligent reflecting surface based on compressed sensing[J]. Systems Engineering and Electronics, 2024, 46(7): 2490-2497.
1 | WU Q Q, ZHANG R. Intelligent reflecting surface enhanced wireless network: joint active and passive beamforming design[C]//Proc. of the IEEE Global Communications Conference, 2018. |
2 | TAN X, SUN Z, KOUTSONIKOLAS D, et al. Enabling indoor mobile millimeter wave networks based on smart reflect-arrays[C]//Proc. of the IEEE Conference on Computer Communications, 2018: 270-278. |
3 |
HU S , RUSEK F , EDFORS O . Beyond massive-MIMO: the potential of data-transmission with large intelligent surfaces[J]. IEEE Trans. on Signal Processing, 2018, 66 (10): 2746- 2758.
doi: 10.1109/TSP.2018.2816577 |
4 |
WU Q Q , ZHANG R . Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58 (1): 106- 112.
doi: 10.1109/MCOM.001.1900107 |
5 |
WU Q Q , ZHANG S W , ZHENG B X , et al. Intelligent reflecting surface aided wireless communications: a tutorial[J]. IEEE Trans. on Communications, 2021, 69 (5): 3313- 3351.
doi: 10.1109/TCOMM.2021.3051897 |
6 |
YANG Y F , ZHENG B X , ZHANG S W , et al. Intelligent reflecting surface meets OFDM: protocol design and rate maximizati-on[J]. IEEE Trans. on Communications, 2020, 68 (7): 4522- 4535.
doi: 10.1109/TCOMM.2020.2981458 |
7 |
ZHENG B X , ZHAN R . Intelligent reflecting surface enhanced OFDM: channel estimation and reflection optimization[J]. IEEE Wireless Communications Letters, 2020, 9 (4): 518- 522.
doi: 10.1109/LWC.2019.2961357 |
8 |
ZHENG B X , YOU C S , ZHANG R . Fast channel estimation for IRS assisted OFDM[J]. IEEE Wireless Communications Letters, 2021, 10 (3): 580- 584.
doi: 10.1109/LWC.2020.3038434 |
9 |
ZHENG B , YOU C S , ZHANG R . Intelligent reflecting surface assisted multiuser OFDMA: channel estimation and training design[J]. IEEE Trans. on Wireless Communications, 2020, 19 (12): 8315- 8329.
doi: 10.1109/TWC.2020.3021434 |
10 |
JIANG W H , CHEN B X , ZHAO J , et al. Joint active and passive beamforming design for the IRS assisted MIMOME-OFDM secure communications[J]. IEEE Trans. on Vehicular Technology, 2021, 70 (10): 10369- 10381.
doi: 10.1109/TVT.2021.3106351 |
11 |
ZHANG S W , ZHANG R . Capacity characterization for intelligent reflecting surface aided MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2020, 38 (8): 1823- 1838.
doi: 10.1109/JSAC.2020.3000814 |
12 |
PAN C H , REN H , WANG K Z , et al. Multicell MIMO communications relying on intelligent reflecting surfaces[J]. IEEE Trans. on Wireless Communications, 2020, 19 (8): 5218- 5233.
doi: 10.1109/TWC.2020.2990766 |
13 | OZDOGAN O, BJORNSON E, LARSSONE G. Using intelligent reflecting surfaces for rank improvement in MIMO comm-unications[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 9160-9164. |
14 |
ZHENG B X , WU Q Q , ZHANG R . Intelligent reflecting surface-assisted multiple access with user pairing: NOMA or OMA?[J]. IEEE Communications Letters, 2020, 24 (4): 753- 757.
doi: 10.1109/LCOMM.2020.2969870 |
15 | YANG G, XU X Y, LIANG Y C. Intelligent reflecting surface assisted nonorthogonal multiple access[C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2020. |
16 |
DING Z , POOR H V . A simple design of IRS-NOMA transmission[J]. IEEE Communications Letters, 2020, 24 (5): 1119- 1123.
doi: 10.1109/LCOMM.2020.2974196 |
17 |
MU X D , LIU Y W , GUO L , et al. Exploiting intelligent reflecting surfaces in NOMA networks: joint beamforming optimization[J]. IEEE Trans. on Wireless Communications, 2020, 19 (10): 6884- 6898.
doi: 10.1109/TWC.2020.3006915 |
18 |
齐永磊, 陈西宏, 袁迪喆. SC-FDE系统中基于UW的联合信道估计均衡算法[J]. 系统工程与电子技术, 2022, 44 (10): 3258- 3265.
doi: 10.12305/j.issn.1001-506X.2022.10.32 |
QI Y L , CHEN X H , YUAN D Z . Joint channel estimation and equalization algorithm based on UW for SC-FDEsystem[J]. Systems Engineering and Electronics, 2022, 44 (10): 3258- 3265.
doi: 10.12305/j.issn.1001-506X.2022.10.32 |
|
19 |
LIU H , ZHANG J Y , WU Q Q , et al. ADMM based channel estimation for RISs aided millimeter wave communications[J]. IEEE Communications Letters, 2021, 25 (9): 2894- 2898.
doi: 10.1109/LCOMM.2021.3095218 |
20 |
MAO Z , PENG M , LIU X . Channel estimation for reconfigurable intelligent surface assisted wireless communication systems in mobility scenarios[J]. China Communications, 2021, 18 (3): 29- 38.
doi: 10.23919/JCC.2021.03.003 |
21 |
HE J , WYMEERSCH H , JUNTTI M . Channel estimation for RIS-aided mmWave MIMO systems via atomic norm minimization[J]. IEEE Trans. on Wireless Communications, 2021, 20 (9): 5786- 5797.
doi: 10.1109/TWC.2021.3070064 |
22 | HE J, LEINONEN M, WYMEERSCH H, et al. Channel estimation for RIS-aided mmWave MIMO systems[C]//Proc. of the IEEE Global Communications Conference, 2020. |
23 |
MA X Y , CHEN Z , CHEN W J , et al. Joint channel estimation and data rate maximization for intelligent reflecting surface assisted terahertz MIMO communication systems[J]. IEEE Access, 2020, 8, 99565- 99581.
doi: 10.1109/ACCESS.2020.2994100 |
24 |
MIRZA J , ALI B . Channel estimation method and phase shift design for reconfigurable intelligent surface assisted MIMO networks[J]. IEEE Trans. on Cognitive Communications and Networking, 2021, 7 (2): 441- 451.
doi: 10.1109/TCCN.2021.3072895 |
25 |
WEI X H , SHEN D C , DAI L L . Channel estimation for RIS assisted wireless communications—part Ⅱ: an improved solution based on double-structured sparsity[J]. IEEE Communications Letters, 2021, 25 (5): 1403- 1407.
doi: 10.1109/LCOMM.2021.3052787 |
26 |
WAN Z W , GAO Z , GAO F F , et al. Terahertz massive MIMO with holographic reconfigurable intelligent surfaces[J]. IEEE Trans. on Communications, 2021, 69 (7): 4732- 4750.
doi: 10.1109/TCOMM.2021.3064949 |
27 |
ARDAH K , GHEREKHLOO S , HAARDTM , et al. TRICE: a channel estimation framework for RIS-aided millimeter-waveMIMO systems[J]. IEEE Signal Processing Letters, 2021, 28, 513- 517.
doi: 10.1109/LSP.2021.3059363 |
28 | WAN Z W, GAO Z, ALOUINI M S. Broad-band channel estimation for intelligent reflecting surface aided mmWave massive MIMO systems[C]//Proc of the IEEE International Conference on Communications, 2020, 27: 905-909. |
29 |
WANG P L , FANG J , DUAN H P , et al. Compressed channel estimation for intelligent reflecting surface assisted millimeter Wave systems[J]. IEEE Signal Processing Letters, 2020, 27, 905- 909.
doi: 10.1109/LSP.2020.2998357 |
30 | ALEXANDROPOULOS G C, VLACHOS E. A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 9175-9179. |
31 | MISHRA D, JOHANSSON H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2019: 4659-4663. |
32 |
HE Z Q , YUAN X . Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[J]. IEEE Wireless Communications Letters, 2020, 9 (2): 210- 214.
doi: 10.1109/LWC.2019.2948632 |
33 | NADEEM Q , ALWAZANI H , KAMMOUN A , et al. Intelligent reflecting surface assisted multiuser MISO communication: channel estimation and beamforming design[J]. IEEE Open Journal of the Communic-ations Society, 2020, 1 (1): 661- 680. |
34 | 吴梦行, 伍飞云, 杨坤德, 等. 改进的稀疏度自适应多路径匹配追踪算法[J]. 哈尔滨工程大学学报, 2021, 42 (11): 1611- 1617. |
WU M X , WU F Y , YANG K D , et al. Improved sparsity adaptive multipath matching pursuit algorithm[J]. Journal of Harbin Engineering University, 2021, 42 (11): 1611- 1617. |
[1] | 吴敏, 黎子皓, 郝程鹏, 胡桥. 基于压缩感知的低复杂度超分辨角度估计方法[J]. 系统工程与电子技术, 2024, 46(6): 1831-1837. |
[2] | 陈子睿, 陈阿磊, 刘维建, 杨军, 陈文峰, 马晓岩. 天波超视距雷达非均匀采样信号频谱重构[J]. 系统工程与电子技术, 2024, 46(4): 1236-1246. |
[3] | 王汝言, 王康, 崔亚平, 何鹏, 吴大鹏. IRS辅助的车联网相移设计和信道对齐策略[J]. 系统工程与电子技术, 2024, 46(2): 761-769. |
[4] | 杨丽花, 任露露, 呼博, 邵永琪, 聂倩. 基于元学习的时变信道估计方法[J]. 系统工程与电子技术, 2023, 45(6): 1872-1879. |
[5] | 季策, 田博彦, 耿蓉, 李伯群. 基于VSCBOMP算法的FBMC/OQAM系统信道估计[J]. 系统工程与电子技术, 2023, 45(4): 1193-1199. |
[6] | 季策, 宋博翰, 耿蓉, 梁敏骏. 快时变信道下基于深度学习的OFDM系统信道估计[J]. 系统工程与电子技术, 2023, 45(11): 3649-3655. |
[7] | 李瑞泽, 张双辉, 刘永祥. 基于卷积ADMM网络的高效结构化稀疏ISAR成像方法[J]. 系统工程与电子技术, 2023, 45(1): 56-70. |
[8] | 田鹤, 董纯柱, 殷红成. 基于频域稀疏压缩感知的雷达目标三维散射中心反演方法[J]. 系统工程与电子技术, 2022, 44(9): 2783-2790. |
[9] | 谢艾伦, 刘晓斌, 赵锋, 艾小锋, 肖顺平. 辐射式仿真中PCM信号间歇收发回波重构方法[J]. 系统工程与电子技术, 2022, 44(3): 771-776. |
[10] | 党建, 李业伟, 朱永东, 郭荣斌, 张在琛, 吴亮. 可重构智能表面通信系统的渐进信道估计方法[J]. 系统工程与电子技术, 2022, 44(3): 998-1006. |
[11] | 吴灏, 康颖, 葛松虎, 李亚星, 孟进. VHF/UHF通信电台接收链路中的干扰抑制合并方法[J]. 系统工程与电子技术, 2022, 44(3): 1014-1021. |
[12] | 刘步花, 丁丹, 杨柳, 薛乃阳, 刘仲谦. 基于DNN的无人机数据OFDM传输技术[J]. 系统工程与电子技术, 2022, 44(2): 696-702. |
[13] | 王丹, 刘金枝, 梅志强, 梁家敏. 基于IRS辅助多用户通信系统的信道容量优化[J]. 系统工程与电子技术, 2022, 44(12): 3871-3879. |
[14] | 李海, 呼延泽, 毛志杰. 强杂波下基于压缩感知的低空风切变速度解模糊[J]. 系统工程与电子技术, 2022, 44(10): 3029-3036. |
[15] | 齐永磊, 陈西宏, 袁迪喆. SC-FDE系统中基于UW的联合信道估计均衡算法[J]. 系统工程与电子技术, 2022, 44(10): 3258-3265. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||