1 |
TAN D K P, HE J, LI Y C. Integrated sensing and communication in 6G: motivations, use cases, requirements, challenges and future directions[C]//Proc. of the IEEE International Online Symposium on Joint Communications & Sensing, 2021.
|
2 |
VERMA S , KAUR S , KHAN M A , et al. Toward green communication in 6G-enabled massive internet of things[J]. IEEE Internet of Things Journal, 2021, 8 (7): 5408- 5415.
doi: 10.1109/JIOT.2020.3038804
|
3 |
BOURDOUX A, BARRETO A N, LIEMPD B V, et. al. 6G white paper on localization and sensing[EB/OL]. [2022-11-27]. https://arxiv.org/abs/2006.01779.
|
4 |
TANG T , LI L , WU X Y . TSA-SCC: text semantic-aware screen content coding with ultra low bitrate[J]. IEEE Trans. on Image Processing, 2022, 31, 2463- 2477.
doi: 10.1109/TIP.2022.3152003
|
5 |
ZHANG J Y , LIU H , WU Q , et al. RIS-aided next-generation high-speed train communications: challenges, solutions, and future directions[J]. IEEE Wireless Communications, 2021, 28 (6): 145- 151.
doi: 10.1109/MWC.001.2100170
|
6 |
LIU Y W , LIU X , MU X D , et al. Reconfigurable intelligent surfaces: principles and opportunities[J]. IEEE Communications Surveys & Tutorials, 2021, 23 (3): 1546- 1577.
|
7 |
PAN C H , REN H , WANG K Z , et al. Reconfigurable intelligent surfaces for 6G systems: principles, applications, and research directions[J]. IEEE Communications Magazine, 2021, 59 (6): 14- 20.
doi: 10.1109/MCOM.001.2001076
|
8 |
CUI T J , QI M Q , WAN X , et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3, 27- 35.
|
9 |
李彬睿, 张忠培. 可重构智能面辅助的低精度量化大规模MIMO系统的信道估计[J]. 系统工程与电子技术, 2021, 43 (10): 2986- 2991.
doi: 10.12305/j.issn.1001-506X.2021.10.34
|
|
LI B R , ZHANG Z P . Channel estimation for reconfigurable intelligent surface assisted low-resolution quantized massive MIMO[J]. Systems Engineering and Electronics, 2021, 43 (10): 2986- 2991.
doi: 10.12305/j.issn.1001-506X.2021.10.34
|
10 |
党建, 李业伟, 朱永东, 等. 可重构智能表面通信系统的渐进信道估计方法[J]. 系统工程与电子技术, 2022, 44 (3): 998- 1006.
doi: 10.12305/j.issn.1001-506X.2022.03.32
|
|
DANG J , LI Y W , ZHU Y D , et al. Progressive channel estimation method for RIS-assisted communication system[J]. Systems Engineering and Electronics, 2022, 44 (3): 998- 1006.
doi: 10.12305/j.issn.1001-506X.2022.03.32
|
11 |
WU Q Q , ZHANG S W , ZHENG B X , et al. Intelligent reflecting surface-aided wireless communications: a tutorial[J]. IEEE Trans. on Communications, 2021, 69 (5): 3313- 3351.
doi: 10.1109/TCOMM.2021.3051897
|
12 |
LIANG Y C , CHEN J , LONG R , et al. Reconfigurable intelligent surfaces for smart wireless environments: channel estimation system design and applications in 6G networks[J]. Science China Information Sciences, 2021, 64, 200301.
doi: 10.1007/s11432-020-3261-5
|
13 |
ZHOU P , CHENG K J , HAN X , et al. IEEE 802.11ay-based mmwave WLANs: design challenges and solutions[J]. IEEE Communications Surveys & Tutorials, 2018, 20 (3): 1654- 1681.
|
14 |
WU Q Q , ZHANG R . Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58 (1): 106- 112.
doi: 10.1109/MCOM.001.1900107
|
15 |
RENZO M D , ZAPPONE A , DEBBAH M , et al. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38 (11): 2450- 2525.
doi: 10.1109/JSAC.2020.3007211
|
16 |
许耀华, 王慧平, 王贵竹, 等. 基于图着色和三维匹配的车联网资源分配算法[J]. 系统工程与电子技术, 2023, 45 (3): 869- 875.
doi: 10.12305/j.issn.1001-506X.2023.03.29
|
|
XU Y H , WANG H P , WANG G Z , et al. Resource allocation algorithm for internet of vehicles based on graph coloring and three-dimensional matching[J]. Systems Engineering and Electronics, 2023, 45 (3): 869- 875.
doi: 10.12305/j.issn.1001-506X.2023.03.29
|
17 |
MA Z F, AI B, HE R S, et al. Multipath fading channel modeling with aerial intelligent reflecting surface[C]//Proc. of the IEEE Global Communications Conference, 2021.
|
18 |
LIAN Z X , SU Y J , WANG Y J . A non-stationary 3D wideband channel model for intelligent reflecting surface-assisted HAP-MIMO communication systems[J]. IEEE Trans. on Vehicular Technology, 2022, 71 (2): 1109- 1123.
doi: 10.1109/TVT.2021.3131765
|
19 |
WANG K, LAM C T, NG B K. Doppler effect mitigation using reconfigurable intelligent surfaces with hardware impairments[C]//Proc. of the IEEE Global Telecommunications Conference Workshops, 2021.
|
20 |
WANG K, LAM C T, NG B K. IRS-aided predictable high-mobility vehicular communication with Doppler effect mitigation[C]//Proc. of the IEEE 93rd Vehicular Technology Conference, 2021.
|
21 |
BASAR E. Reconfigurable intelligent surfaces for Doppler effect and multipath fading mitigation[EB/OL]. [2022-11-27]. https://arxiv.org/abs/1912.04080v1.
|
22 |
ZHOU R Y, CHEN X Y, TANG W K, et al. Modeling and measurements for multi-path mitigation with reconfigurable intelligent surfaces[C]//Proc. of the 16th European Conference on Antennas and Propagation, 2022.
|
23 |
WU G L , LI F , JIANG H L . Analysis of multipath fading and Doppler effect with multiple reconfigurable intelligent surfaces in mobile wireless networks[J]. Entropy, 2022, 24 (2): 281.
doi: 10.3390/e24020281
|
24 |
WU W , WANG H , WANG W N , et al. Doppler mitigation method aided by reconfigurable intelligent surfaces for high-speed channels[J]. IEEE Wireless Communications Letters, 2022, 11 (3): 627- 631.
doi: 10.1109/LWC.2021.3139043
|
25 |
HUANG Z X, ZHENG B X, ZHANG R. Transforming fading channel from fast to slow: IRS-assisted high-mobility communication[C]//Proc. of the IEEE International Conference on Communications, 2021.
|
26 |
XU W Y , AN J C , XU Y J , et al. Time-varying channel prediction for RIS-assisted MU-MISO networks via deep learning[J]. IEEE Trans. on Cognitive Communications and Networking, 2021, 8 (4): 1802- 1815.
|
27 |
ZHOU X M, YANG Z Y, ZHANG T Y, et al. Channel estimation and projection for RIS-assisted MIMO using zadoff-chu sequences[EB/OL]. [2022-11-27]. https://arxiv.org/abs/2202.10038.
|
28 |
BESSER K L , JORSWIECK E A . Reconfigurable intelligent surface phase hopping for ultra-reliable communications[J]. IEEE Trans. on Wireless Communications, 2022, 21 (11): 9082- 9095.
doi: 10.1109/TWC.2022.3172760
|
29 |
KISHK M A , ALOUINI M S . Exploiting randomly located blockages for large-scale deployment of intelligent surfaces[J]. IEEE Journal on Selected Areas in Communications, 2021, 39 (4): 1043- 1056.
doi: 10.1109/JSAC.2020.3018808
|
30 |
LYU J B , ZHANG R . Hybrid active/passive wireless network aided by intelligent reflecting surface: system modeling and performance analysis[J]. IEEE Trans. on Wireless Communications, 2021, 20 (11): 7196- 7212.
doi: 10.1109/TWC.2021.3081447
|
31 |
AYACH O E , RAJAGOPAL S , ABU-SURRA S , et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Trans. on Wireless Communications, 2014, 13 (3): 1499- 1513.
doi: 10.1109/TWC.2014.011714.130846
|
32 |
AL-TOUS H, TIRKKONEN O. Static reflecting surface based on population-level optimization[C]//Proc. of the IEEE Global Communications Conference, 2021.
|