| 1 | 张国柱, 黄可生, 姜文利, 等.  基于信号包络的辐射源细微特征提取方法[J]. 系统工程与电子技术, 2006, 28 (6): 795- 797. | 
																													
																						|  | ZHANG G Z ,  HUANG K S ,  JIANG W L , et al.  Emitter feature extract method based on signal envelope[J]. Systems Engineering and Electronics, 2006, 28 (6): 795- 797. | 
																													
																						| 2 | YILDIRIM A .  Method for estimating the central frequency of phase-coded radar signals[J]. IET Signal Processing, 2016, 10 (9): 1073- 1081. doi: 10.1049/iet-spr.2016.0237
 | 
																													
																						| 3 | 王国涛, 姜秋喜, 刘方正, 等.  基于频谱和瞬时自相关的雷达信号调制识别[J]. 兵器装备工程学报, 2022, 43 (1): 200- 205. | 
																													
																						|  | WANG G T ,  JIANG Q X ,  LIU F Z , et al.  Radar signal modulation recognition based on spectrum and instaneous autocorrelation[J]. Journal of Ordnance Equipment Engineering, 2022, 43 (1): 200- 205. | 
																													
																						| 4 | AMIN V S, ZHANG Y D, HIMED B. Improved instaneous frequency estimation of multi-component FM signals[C]//Proc. of the IEEE Radar Conference, 2019. | 
																													
																						| 5 | ZHANG M ,  LIU L T ,  DIAO M .  LPI radar waveform recognition based on time-frequency distribution[J]. Sensors, 2016, 16 (10): 1682. doi: 10.3390/s16101682
 | 
																													
																						| 6 | HELBERT S ,  KERISTA S ,  SYAHRUL H , et al.  Time frequency signal classification using continuous wavelet transformation[J]. IOP Conference Series Materials Science and Engineering, 2020, 851 (1): 12045- 12051. doi: 10.1088/1757-899X/851/1/012045
 | 
																													
																						| 7 | QU Q Z, WANG Y L, DU Q L. Automatic modulation recognition for radar signals based on ACSE networks[C]//Proc. of the CIE International Conference on Radar, 2021: 1104-1107. | 
																													
																						| 8 | WANG G M, CHEN S W, HU X, et al. Radar emitter sorting and recognition based on time-frequency image union feature[C]//Proc. of the IEEE 4th International Conference on Signal and Image Processing, 2019: 165-170. | 
																													
																						| 9 | HAN L H ,  HUANG G M .  Intrapulse modulation recognition of radar signals based on spectrum analysis[J]. Electronic Information Warfare Technology, 2011, 26 (3): 29- 32. | 
																													
																						| 10 | 孟祥豪, 赵海旭, 梁言.  一种基于对角积分双谱的复合调制LPI雷达信号识别方法[J]. 航天电子对抗, 2021, 37 (5): 13-18, 24. | 
																													
																						|  | MENG X H ,  ZHAO H X ,  LIANG Y .  A compound modulated LPI radar signal recognition method based on diagonal integral bispectrum[J]. Aerospace Electronic Warfare, 2021, 37 (5): 13-18, 24. | 
																													
																						| 11 | 刘赢, 田润澜, 王晓峰.  基于深层卷积神经网络和双谱特征的雷达信号识别方法[J]. 系统工程与电子技术, 2019, 41 (9): 1998- 2005. | 
																													
																						|  | LIU Y ,  TIAN R L ,  WANG X F .  Radar signal recognition method based on deep convolutional neural network and bispectrum feature[J]. Systems Engineering and Electronics, 2019, 41 (9): 1998- 2005. | 
																													
																						| 12 | MI X P ,  CHEN X H ,  LIU Q , et al.  Radar signals modulation recognition based on bispectrum feature processing[J]. Journal of Physics: Conference Series, 2021, 1971 (1): 12099- 12110. doi: 10.1088/1742-6596/1971/1/012099
 | 
																													
																						| 13 | YUAN X Y ,  HE P ,  ZHU Q L , et al.  Adversarial examples: attacks and defenses for deep learning[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (9): 2805- 2824. doi: 10.1109/TNNLS.2018.2886017
 | 
																													
																						| 14 | O'SHEA T J ,  ROY T ,  CLANCY T C .  Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179. doi: 10.1109/JSTSP.2018.2797022
 | 
																													
																						| 15 | XU Z Y .  Research on deep learning in natural language processing[J]. Advances in Computer and Communication, 2023, 4 (3): 196- 200. | 
																													
																						| 16 | HU K J ,  LI H Y ,  XU S F , et al.  Nonlinear signal classification based on wavelet transform and deep belief network[J]. Journal of Physics: Conference Series, 2021, 1948 (1): 12029- 12034. | 
																													
																						| 17 | ZHOU Z W ,  HUANG G M ,  CHEN H Y , et al.  Automatic radar waveform recognition based on deep convolutional denoising auto-encoders[J]. Circuits, Systems, and Signal Processing, 2018, 37 (9): 4043- 4048. | 
																													
																						| 18 | LIU L T ,  LI X Y .  Radar signal recognition based on triplet convolutional neural network[J]. EURASIP Journal on Advances in Signal Processing, 2021, 112. | 
																													
																						| 19 | 杨洁, 张欢.  基于改进型AlexNet的LPI雷达信号识别[J]. 现代电子技术, 2020, 43 (5): 57- 60. | 
																													
																						|  | YANG J ,  ZHANG H .  LPI radar signal recognition based on improved AlexNet[J]. Modern Electronics Technique, 2020, 43 (5): 57- 60. | 
																													
																						| 20 | QIN X, ZHA X, HUANG J, et al. Radar waveform recognition based on deep residual network[C]//Proc. of the IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, 2019: 892-896. | 
																													
																						| 21 | 秦鑫, 黄洁, 查雄, 等.  基于扩张残差网络的雷达辐射源信号识别[J]. 电子学报, 2020, 48 (3): 456- 462. | 
																													
																						|  | QIN X ,  HUANG J ,  ZHA X , et al.  Radar emitter signal recognition based on dilated residual network[J]. Acta Electronica Sinica, 2020, 48 (3): 456- 462. | 
																													
																						| 22 | QU Z Y ,  MAO X J ,  DENG Z A .  Radar signal intra-pulse mo-dulation recognition based on convolutional neural network[J]. IEEE Access, 2018, 6, 43874- 43884. | 
																													
																						| 23 | HUANG D K ,  YAN X P ,  HAO X H , et al.  Low SNR multi-emitter signal sorting and recognition method based on low-order cyclic statistics CWD time-frequency images and the YOLOv5 deep learning model[J]. Sensors, 2022, 22 (20): 7783- 7805. | 
																													
																						| 24 | 肖易寒, 王亮, 郭玉霞.  基于去噪卷积神经网络的雷达信号调制类型识别[J]. 电子与信息学报, 2021, 43 (8): 2300- 2307. | 
																													
																						|  | XIAO Y H ,  WANG L ,  GUO Y X .  Radar signal modulation type recognition based on denoising convolutional neural network[J]. Journal of Electronics and Information Technology, 2021, 43 (8): 2300- 2307. | 
																													
																						| 25 | LI J ,  ZHANG H Q ,  OU J P , et al.  A radar signal recognition approach via ⅡF-Net deep learning models[J]. Computational Intelligence and Neuroscience, 2020, 8858588. | 
																													
																						| 26 | SI W J ,  WAN C X ,  DENG Z A .  An efficient deep convolutional neural network with features fusion for radar signal recognition[J]. Multimedia Tools and Applications, 2023, 82, 2871- 2885. | 
																													
																						| 27 | QUAN D Y ,  TANG Z Y ,  WANG X F , et al.  LPI radar signal recognition based on dual-channel CNN and feature fusion[J]. Symmetry, 2022, 14 (3): 570- 582. | 
																													
																						| 28 | ZHANG X L ,  ZHANG J Z ,  LUO T Z , et al.  Radar signal intrapulse modulation recognition based on a denoising-guided disentangled network[J]. Remote Sensing, 2022, 14 (5): 1252- 1266. | 
																													
																						| 29 | LI J F, WEN Y, HE L H. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 6153-6162. | 
																													
																						| 30 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |