系统工程与电子技术 ›› 2026, Vol. 48 ›› Issue (1): 350-360.doi: 10.12305/j.issn.1001-506X.2026.01.31

• 通信与网络 • 上一篇    下一篇

基于MADDPG算法的星地协同边缘计算任务卸载方法

宋传龙1,2(), 张倩武1(), 何健2,*(), 周文骏1,2(), 王辉2(), 孔巍巍2(), 田文波2   

  1. 1. 上海大学通信与信息工程学院,上海 200444
    2. 上海航天电子通讯设备研究所上海市天基异构网络协同计算重点实验室,上海 201100
  • 收稿日期:2024-05-29 出版日期:2026-01-25 发布日期:2026-02-11
  • 通讯作者: 何健 E-mail:1285635433@qq.com;zhangqianwu@shu.edu.cn;hejian@sina.com;1547283254@qq.com;wanghuiahu@126.com;kongweiwei@804.sast.casc
  • 作者简介:宋传龙(2000—),男,硕士研究生,主要研究方向为天基边缘计算、任务卸载
    张倩武(1984—),男,副教授,博士,主要研究方向为光纤通信、宽带光接入网、物联网技术、光通信测试仪器仪表、复杂网络协议分析
    周文骏(1999—),男,硕士研究生,主要研究方向为天基边缘计算、边缘特征融合
    王 辉(1992—),男,工程师,博士,主要研究方向为移动边缘计算、深度强化学习
    孔巍巍(1980—),女,工程师,硕士,主要研究方向为卫星通信网络、边缘计算
    田文波(1979—),男,研究员,硕士,主要研究方向为移动边缘计算、星载计算机系统架构
  • 基金资助:
    国家重点研发计划(2023YFE0208100)资助课题

Edge computing task offloading method of satellite-ground collaborative based on MADDPG algorithm

Chuanlong SONG1,2(), Qianwu ZHANG1(), Jian HE2,*(), Wenjun ZHOU1,2(), Hui WANG2(), Weiwei KONG2(), Wenbo TIAN2   

  1. 1. School of Communication & Information Engineering,Shanghai University,Shanghai 200444,China
    2. Shanghai Key Laboratory of Intelligent Computing for Spatial Heterogeneous Network, Shanghai Aerospace Electronic Technology Institute,Shanghai 201100,China
  • Received:2024-05-29 Online:2026-01-25 Published:2026-02-11
  • Contact: Jian HE E-mail:1285635433@qq.com;zhangqianwu@shu.edu.cn;hejian@sina.com;1547283254@qq.com;wanghuiahu@126.com;kongweiwei@804.sast.casc

摘要:

低轨卫星网络作为空间通信网络的重要组成部分,能够有效弥补地面通信网络在边缘计算方面存在的地面基站覆盖面较低、易受自然灾害影响等问题。因此,基于地面边缘计算场景,引入低轨卫星网络,构建了星地协同网络边缘计算场景,并对边缘计算中的关键技术任务卸载进行了研究。鉴于星地网络中通信距离较长、星上资源有限以及各节点相对位置变化迅速等因素可能导致的系统时延和能耗增加问题,以最小化系统时延和能耗为目标,将其建模为一个马尔可夫博弈过程。提出了一种针对星地协同网络边缘计算场景的基于多智能体深度确定性策略梯度的强化学习算法,通过集中式训练和分布式执行来降低系统综合开销。最后,将该算法与其他算法进行比较,结果表明,相较于任务本地处理、深度确定性策略梯度算法和双延迟深度确定性策略梯度算法,该算法使系统综合开销平均降低了37.25%、9.420%和6.756%,同时具备更好的稳定性和收敛性。

关键词: 星地协同网络, 边缘计算, 深度强化学习, 任务卸载决策

Abstract:

Low Earth orbit satellite networks serve as crucial components of space communication networks, effectively addressing challenges encountered by terrestrial communication networks in edge computing, such as limited coverage of ground-based stations and vulnerability to natural disasters. Therefore, this study introduces low Earth orbit satellite networks into the context of ground edge computing, forming a satellite-ground cooperative network for edge computing scenarios and investigating key tasks offloading in edge computing. Given that factors like long communication distances, limited satellite resources, and rapid changes in node positions in satellite-ground networks can lead to increased system latency and energy consumption, this paper aims to minimize system latency and energy consumption by modeling them as a Markov game. A reinforcement learning algorithm based on multi-agent deep deterministic policy gradient specifically tailored for satellite-ground cooperative network edge computing scenarios is proposed, aiming to reduce overall system overhead through centralized training and distributed execution. Finally comparative analysis with other algorithms demonstrates that, compared to local task processing, deep deterministic policy gradient algorithm, and double-delay deep deterministic policy gradient algorithm, the proposed algorithm achieves an average reduction in system overhead of 37.25%, 9.420%, and 6.756%, respectively, while exhibiting superior stability and convergence.

Key words: satellite-ground collaborative network, edge computing, deep reinforcement learning, task offloading decision

中图分类号: