系统工程与电子技术 ›› 2026, Vol. 48 ›› Issue (1): 290-300.doi: 10.12305/j.issn.1001-506X.2026.01.26

• 制导、导航与控制 • 上一篇    下一篇

GEO航天器轨道机动控制研究进展

薛锦妍1, 张雅声2,*, 陶雪峰2, 杨茗棋1, 赵帅龙1   

  1. 1. 航天工程大学研究生院,北京 101416
    2. 航天工程大学,北京 101416
  • 收稿日期:2024-08-05 出版日期:2026-01-25 发布日期:2026-02-11
  • 通讯作者: 张雅声
  • 作者简介:薛锦妍(1998—),女,博士研究生,主要研究方向为轨道动力学
    陶雪峰(1992—),男,讲师,博士,主要研究方向为航天器轨道确定
    杨茗棋(1993—),女,博士研究生,主要研究方向为航天器控制
    赵帅龙(1999—),男,博士研究生,主要研究方向为航天任务分析与设计

Advances in orbital maneuver control for GEO spacecraft

Jinyan XUE1, Yasheng ZHANG2,*, Xuefeng TAO2, Mingqi YANG1, Shuailong ZHAO1   

  1. 1. Graduate School,Space Engineering University,Beijing 101416,China
    2. Space Engineering University,Beijing 101416,China
  • Received:2024-08-05 Online:2026-01-25 Published:2026-02-11
  • Contact: Yasheng ZHANG

摘要:

随着卫星机动能力的不断提升,地球静止轨道(geostationary Earth orbit,GEO)航天器执行空间任务时的安全问题不容忽视。首先,针对目前编队航天器轨道机动中常用的脉冲推力模型和连续推力模型进行综述,并按照机动过程中的航天器数量区分“一对一航天器轨道机动”和“多航天器轨道机动”;其次,分析了微分对策理论、人工智能算法和生物群体智能算法在解决编队航天器轨道机动问题中的异同优劣;最后,从动力学模型、航天器数量类型和求解方法的视角就编队航天器轨道机动问题的特点进行对比分析。未来的研究重点在于提高算法效率及鲁棒性、增强模型适应性,以实现更加精确和高效的太空管理,保障GEO航天器在轨运行的稳定性和安全性。

关键词: 编队航天器, 轨道机动, 纳什均衡, 微分对策, 深度强化学习

Abstract:

With the continuous improvement of satellite maneuverability, the safety of geostationary Earth orbit (GEO) spacecraft during mission operations cannot be ignored. Firstly, the impulsive thrust model and continuous thrust model commonly used in formation spacecraft orbital maneuvers are reviewed, categorizing them into “one-to-one spacecraft orbital maneuvers” and “multi-spacecraft orbital maneuvers” based on the number of spacecraft involved. Secondly, the similarities, differences, advantages of differential game theory, artificial intelligence algorithms, and biological swarm intelligence algorithms in solving orbital maneuver problems of formation spacecraft are analyzed. Finally, a comparative analysis of the characteristics of formation spacecraft orbital maneuver problem is conducted from the perspectives of dynamic models, spacecraft quantity/types, and solution methods. Future research will focus on improving algorithm efficiency and robustness, enhancing model adaptability, and achieving more precise and efficient space management to ensure the stability and safety of GEO spacecraft in-orbit operations.

Key words: spacecraft formation flying, orbital maneuver, Nash equilibrium, differential game, deep reinforcement learning

中图分类号: