系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (9): 2971-2984.doi: 10.12305/j.issn.1001-506X.2025.09.18

• 系统工程 • 上一篇    

多元威胁环境下无人机集群隐身航迹规划算法

闻雯, 时晨光(), 周建江   

  1. 南京航空航天大学雷达成像与微波光子技术教育部重点实验室,江苏 南京 211106
  • 收稿日期:2024-01-02 出版日期:2025-09-25 发布日期:2025-09-16
  • 通讯作者: 时晨光 E-mail:scg_space@163.com
  • 作者简介:闻 雯(2000—),男,硕士研究生,主要研究方向为无人机集群航迹规划、飞行器射频隐身
    周建江(1962—),男,教授,博士,主要研究方向为雷达目标特性分析、特征控制与目标识别、射频隐身
  • 基金资助:
    国家自然科学基金面上项目(62271247);江苏省自然科学基金优秀青年基金(BK20240181);航空科学基金(20220055052001);南京航空航天大学前瞻布局科研专项资金(ILA220171A22)资助课题

Stealthy paths planning algorithm for UAV swarm in multiple-threat environment

Wen WEN, Chenguang SHI(), Jianjiang ZHOU   

  1. Key Laboratory of Radar Imaging and Microwave Photonics,Ministry of Education,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
  • Received:2024-01-02 Online:2025-09-25 Published:2025-09-16
  • Contact: Chenguang SHI E-mail:scg_space@163.com

摘要:

针对现代战争中无人机(unmanned aerial vehicle,UAV)集群在多元威胁环境下的航迹规划及平台安全问题,提出UAV集群隐身航迹规划算法。首先,建立多元威胁环境模型。然后,结合UAV雷达散射截面设计考虑UAV航程、组网雷达探测概率、高射炮威胁概率的集群隐身航迹规划综合代价函数。在此基础上,以最小化UAV集群综合代价函数为优化目标,以满足航迹可行性判定及UAV集群动力学限制为约束条件,构建多元威胁环境下UAV集群隐身航迹规划优化模型。最后,采用改进A*算法对上述优化模型进行求解。仿真结果表明,与现有算法相比所提算法能够在保证各UAV航迹可行性及其动力学性能约束的条件下,有效降低UAV集群综合代价。所提算法能够达到提升集群航迹隐身性能的目的。

关键词: 隐身航迹规划, 无人机集群, 多元威胁环境, A*算法, 综合代价函数

Abstract:

Aiming at the paths planning and platform security issue of unmanned aerial vehicle (UAV) swarm in modern warfare in the multiple-threat environment, a stealthy paths planning algorithm for UAV swarm is proposed. Firstly, a multiple-threat environment model is established. Then, a comprehensive cost function for swarm stealthy paths planning considering UAV’s range, networked radar detection probability, and antiaircraft guns threat probability is designed by combining with UAV radar cross section. On this basis, the optimization objective is to minimize the comprehensive cost function of the UAV swarm in order to meet the paths feasibility determination and UAV swarm dynamics constraints as constraints, to construct the optimization model of UAV swarm stealthy paths planning in a multiple-threat environment. Finally, the improved A* algorithm is used to solve the above optimization model. The simulation results show that in comparison to existing algorithms, the proposed algorithm can effectively reduce the comprehensive cost of the UAV swarm under the condition of ensuring the feasibility of each UAV path and its dynamics performance constraints. The proposed algorithm can achieve the purpose of improving the stealthy performance of the swarm’s paths.

Key words: stealthy paths planning, unmanned aerial vehicle(UAV) swarm, multiple-threat environment, A* algorithm, comprehensive cost function

中图分类号: