系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (12): 3734-3742.doi: 10.12305/j.issn.1001-506X.2023.12.03

• 电子技术 • 上一篇    

基于通信域和雷达域融合特征的无人机集群类型识别算法

张书衡, 翟茹萍, 刘永凯   

  1. 南京航空航天大学电子信息工程学院, 江苏 南京 210016
  • 收稿日期:2022-08-10 出版日期:2023-11-25 发布日期:2023-12-05
  • 通讯作者: 张书衡
  • 作者简介:张书衡 (1998—), 男, 硕士研究生, 主要研究方向为调制识别、雷达目标识别
    翟茹萍 (1997—), 女, 硕士研究生, 主要研究方向为调制识别、无人机信道
    刘永凯 (1999—), 男, 硕士研究生, 主要研究方向为通信和信号处理系统分析
  • 基金资助:
    国家自然科学基金(61971221)

Identification of UAV swarm type based on fusion features of communication and radar domain

Shuheng ZHANG, Ruping ZHAI, Yongkai LIU   

  1. School of Electronics and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2022-08-10 Online:2023-11-25 Published:2023-12-05
  • Contact: Shuheng ZHANG

摘要:

目前已有无人机类型识别算法仅通过通信域或雷达域的信号特征实现单个无人机类型的识别, 存在识别准确率低等问题。提出了一种基于通信信号和雷达信号融合特征的无人机集群类型识别算法。首先, 提取集群通信信号的高阶累积量和瞬时特征统计量, 并融合雷达航迹特征构建无人机集群特征矩阵。其次, 提出一种改进的特征选择算法—二次筛选的近邻成分分析, 对融合特征矩阵进行降维。最后, 利用稀疏自编码器网络进行集群类型的识别。仿真结果表明, 该算法显著降低了集群特征矩阵的维度(仅为原始矩阵维度的27%),同时在信噪比为0 dB时, 对5种集群类型识别的正确率可达88%。

关键词: 无人机集群类型识别, 特征选择, 高阶累积量, 瞬时特征统计量, 雷达航迹

Abstract:

At present, the unmanned aerial vehicle (UAV) type recognition algorithms only realize the identification of a single UAV type through the signal characteristics of the communication domain or radar domain, and there are problems such as low recognition accuracy. This paper proposes a UAV swarm type recognition algorithm based on the fusion characteristics of communication signals and radar signals. Firstly, the high-order cumulant and instantaneous feature statistics of the swarm communication signal are extracted, and the radar track features are fused to construct the UAV swarm feature matrix. Secondly, an improved feature selection algorithm-secondary screening of neighbourhood components analysis (SSNCA) is proposed to reduce the dimensionality of the fusion feature matrix. Finally, a sparse autoencoder network is used for swarm type identification. The simulation results show that the algorithm significantly reduces the dimension of the swarm feature matrix (only 27% of the original matrix dimension). At the same time, when the signal-to-noise ratio is 0 dB, the correct rate of identifying five swarm types can reach 88%.

Key words: unmanned aerial vehicle (UAV) swarm type identification, feature selection, high-order cumulant, instantaneous feature statistics, radar trajectory

中图分类号: