1 |
LI X , ZHANG W , DING Q . Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction[J]. Reliability Engineering & System Safety, 2019, 182 (2): 208- 218.
|
2 |
KUMAR A , PARKASH C , VASHISHTHA G , et al. State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing[J]. Reliability Engineering & System Safety, 2022, 221, 108356.
|
3 |
KUMAR A , GANDHI C P , VASHISHTHA G , et al. VMD based trigonometric entropy measure: a simple and effective tool for dynamic degradation monitoring of rolling element bearing[J]. Mea-surement Science and Technology, 2021, 33 (1): 014005.
|
4 |
HALL M A. Correlation-based feature selection of discrete and numeric class machine learning[C]//Proc. of the 17th International Conference on Machine Learning, 2000: 359-366.
|
5 |
YANG F , HABIBULLAH M S , ZHANG T Y , et al. Health index-based prognostics for remaining useful life predictions in electrical machines[J]. IEEE Trans.on Industrial Electronics, 2016, 63 (4): 2633- 2644.
doi: 10.1109/TIE.2016.2515054
|
6 |
ZHANG B , ZHANG L J , XU J W . Degradation feature selection for remaining useful life prediction of rolling element bearings[J]. Quality and Reliability Engineering International, 2016, 32 (2): 547- 554.
doi: 10.1002/qre.1771
|
7 |
CHEN J L , JING H J , CHANG Y H , et al. Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process[J]. Reliability Engineering & System Safety, 2019, 185, 372- 382.
|
8 |
NGUYEN K T P , MEDJAHER K . A new dynamic predictive maintenance framework using deep learning for failure prognostics[J]. Reliability Engineering & System Safety, 2019, 188, 251- 262.
|
9 |
AHMAD W , KHAN S A , ISLAM M M M , et al. A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models[J]. Reliability Engineering & System Safety, 2019, 184, 67- 76.
|
10 |
ZHAO R , YAN R Q , CHEN Z H , et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115, 213- 237.
doi: 10.1016/j.ymssp.2018.05.050
|
11 |
LIU H , LIU Z Y , JIA W Q , et al. Remaining useful life prediction using a novel feature-attention-based end-to-end approach[J]. IEEE Trans.on Industrial Informatics, 2021, 17 (2): 1197- 1207.
doi: 10.1109/TII.2020.2983760
|
12 |
GUO L , LI N P , JIA F , et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings[J]. Neurocomputing, 2017, 240, 98- 109.
doi: 10.1016/j.neucom.2017.02.045
|
13 |
TANG G, ZHOU Y G, WANG H Q, et al. Prediction of bearing performance degradation with bottleneck feature based on LSTM network[C]//Proc. of the IEEE International Instrumentation and Measurement Technology Conference, 2018.
|
14 |
郑小霞, 钱轶群, 王帅. 基于优选小波包与马氏距离的滚动轴承性能退化GRU预测[J]. 振动与冲击, 2020, 39 (17): 39-46, 63.
doi: 10.13465/j.cnki.jvs.2020.17.006
|
|
ZHENG X X , QIAN Y Q , WANG S . Prediction of rolling bearing performance degradation GRU based on optimal wavelet packet and mahalanobis distance[J]. Vibration and Shock, 2020, 39 (17): 39-46, 63.
doi: 10.13465/j.cnki.jvs.2020.17.006
|
15 |
WU Z H , HUANG N E . Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1 (1): 1- 41.
doi: 10.1142/S1793536909000047
|
16 |
AMAROUAYACHE I I E , SAADI M N , GUERSI N , et al. Bearing fault diagnostics using EEMD processing and convolutional neural network methods[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107 (9): 4077- 4095.
|
17 |
MIAO Y H , ZHAO M , LIN J , et al. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2017, 92, 173- 195.
doi: 10.1016/j.ymssp.2017.01.033
|
18 |
YAN X A , JIA M P . A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing[J]. Neurocomputing, 2018, 313, 47- 64.
doi: 10.1016/j.neucom.2018.05.002
|
19 |
REN L , CUI J , SUN Y Q , et al. Multi-bearing remaining useful life collaborative prediction: a deep learning approach[J]. Journal of Manufacturing Systems, 2017, 43, 248- 256.
doi: 10.1016/j.jmsy.2017.02.013
|
20 |
何正友, 蔡玉梅, 钱清泉. 小波熵理论及其在电力系统故障检测中的应用研究[J]. 中国电机工程学报, 2005, 25 (5): 40- 45.
|
|
HE Z Y , CAI Y M , QIAN Q Q . A study of wavelet entropy theory and its application in electric power system fault detection[J]. Chinese Journal of Electrical Engineering, 2005, 25 (5): 40- 45.
|
21 |
IMANI M . Difference-based target detection using Mahalanobis distance and spectral angle[J]. International Journal of Remote Sensing, 2019, 40 (3/4): 811- 831.
|
22 |
蒋焕文, 孙续. 电子测量[M]. 北京: 中国计量出版社, 1989.
|
|
JIANG H W , SUN X . Electronic measurement[M]. Beijing: China Metrology Press, 1989.
|
23 |
蔺瑞管, 王华伟, 车畅畅, 等. 基于LSTM分类器的航空发动机预测性维护模型[J]. 系统工程与电子技术, 2022, 44 (3): 1052- 1059.
|
|
LIN R G , WANG H W , CHE C C , et al. A predictive maintenance model for aircraft engines based on LSTM classifier[J]. Systems Engineering and Electronics, 2022, 44 (3): 1052- 1059.
|
24 |
HE X F, CAI D, NIYOGI P. Laplacian score for feature selection[C]//Proc. of the 18th International Conference on Neural Information Processing Systems, 2005: 507-514.
|
25 |
霍超颖, 闫华, 冯雪健, 等. HRRP稀疏自编码器深层特征与散射中心特征的关联性研究[J]. 系统工程与电子技术, 2021, 43 (11): 3040- 3053.
|
|
HUO C Y , YAN H , FENG X J , et al. Research on the correlation between deep features and scattering center features of HRRP sparse autoencoder[J]. Systems Engineering and Electronics, 2021, 43 (11): 3040- 3053.
|
26 |
孙文珺, 邵思羽, 严如强. 基于稀疏自动编码深度神经网络的感应电动机故障诊断[J]. 机械工程学报, 2016, 52 (9): 65- 71.
|
|
SUN W J , SHAO S Y , YAN R Q . Fault diagnosis of induction motors based on sparse automatic encoding deep neural networks[J]. Journal of Mechanical Engineering, 2016, 52 (9): 65- 71.
|
27 |
SHAO H D , CHENG J S , JIANG H K , et al. Enhanced deep gated recurrent unit and complex wavelet packet energy moment entropy for early fault prognosis of bearing[J]. Know-ledge-based Systems, 2020, 188, 105022.
|
28 |
NECTOUX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: an experimental platform for bearings accelerated degradation tests[C]//Proc. of the IEEE International Conference on Prognostics and Health Management, 2012.
|
29 |
LOUTAS T H , ROULIAS D , GEORGOULAS G . Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic E-support vectors regression[J]. IEEE Trans.on Reliability, 2013, 62 (4): 821- 832.
|