1 |
张卫东, 刘笑成, 韩鹏. 水上无人系统研究进展及其面临的挑战[J]. 自动化学报, 2020, 46 (5): 847- 857.
|
|
ZHANG W D, LIU X C, HAN P. Progress and challenges of overwater Unmanned Systems[J]. Acta Automatica Sinica, 2020, 46 (5): 847- 857.
|
2 |
LIU Z X, ZHANG Y M, YU X, et al. Unmanned surface vehicles: an overview of developments and challenges[J]. Annual Reviews in Control, 2016, 41, 71- 93.
doi: 10.1016/j.arcontrol.2016.04.018
|
3 |
MU Z X, PAN J, ZHOU Z Y, et al. A survey of the pursuit-evasion problem in swarm intelligence[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24 (8): 1093- 1116.
|
4 |
李瑞珍, 杨惠珍, 萧丛杉. 基于动态围捕点的多机器人协同策略[J]. 控制工程, 2019, 26 (3): 510- 514.
|
|
LI R Z, YANG H Z, XIAO C S. Cooperative hunting strategy for multi-mobile robot systems based on dynamic hunting points[J]. Control Engineering of China, 2019, 26 (3): 510- 514.
|
5 |
XIE Y L, LIANG X, LOU L X, et al. Self-organization method of USV swarm target strike task based on ant colony algorithm[C]//Proc. of the 3rd International Symposium on Autonomous Systems, 2019: 388−393.
|
6 |
王浩丞, 罗贺, 马滢滢, 等. 基于纳什均衡博弈的多无人机对地攻击目标分配方法[J]. 控制与决策, 2024, 39 (4): 1364- 1369.
|
|
WANG H C, LUO H, MA Y Y, et al. A target assignment method based on Nash equilibrium game for multi UAV ground attack[J]. Control and Decision, 2024, 39 (4): 1364- 1369.
|
7 |
WANG Y H, LIU Y, XIE K C. Dynamic hunting method for Multi-USVs based on improved game theory model[C]// Proc. of the 33rd Chinese Control and Decision Conference, 2021: 3212−3217.
|
8 |
LIU F, DONG X W, YU J L, et al. Distributed Nash equilibrium seeking of N-coalition noncooperative games with application to UAV swarms[J]. IEEE Trans. on Network Science and Engineering, 2022, 9 (4): 2392- 2405.
doi: 10.1109/TNSE.2022.3163447
|
9 |
FRANCIS A, FAUST A, CHIANG H T L, et al. Long-range indoor navigation with PRM-RL[J]. IEEE Trans. on Robotics, 2020, 36 (4): 1115- 1134.
doi: 10.1109/TRO.2020.2975428
|
10 |
XUE W Q, KOLARIC P, FAN J L, et al. Inverse reinforcement learning in tracking control based on inverse optimal control[J]. IEEE Trans. on Cybernetics, 2022, 52 (10): 10570- 10581.
doi: 10.1109/TCYB.2021.3062856
|
11 |
FANG F, LIANG W Y, WU Y, et al. Self-supervised reinforcement learning for active object detection[J]. IEEE Robotics and Automation Letters, 2022, 7 (4): 10224- 10231.
doi: 10.1109/LRA.2022.3193019
|
12 |
FAN Z L, YANG H Y, LIU F, et al. Reinforcement learning method for target hunting control of multi-robot systems with obstacles[J]. International Journal of Intelligent Systems, 2022, 37 (12): 11275- 11298.
doi: 10.1002/int.23042
|
13 |
夏家伟, 朱旭芳, 张建强, 等. 基于多智能体强化学习的无人艇协同围捕方法研究[J]. 控制与决策, 2023, 38 (5): 1438- 1447.
|
|
XIA J W, ZHU X F, ZHANG J Q, et al. Research on cooperative hunting method of unmanned surface vehicle based on multi-agent reinforcement learning[J]. Control and Decision, 2023, 38 (5): 1438- 1447.
|
14 |
HARATI A, AHMADABADI M N, ARAABI B N. Knowledge-based multi-agent credit assignment: a study on task type and critic information[J]. IEEE Systems Journal, 2007, 1 (1): 55- 67.
doi: 10.1109/JSYST.2007.901641
|
15 |
LI Q, PENG H, LI J X, et al. A survey on text classification: from traditional to deep learning[J]. Association for Computing Machinery, 2022, 13 (2): 2157- 6904.
|
16 |
GREFF K, SRIVASTAVA R K, KOUTNIK J, et al. LSTM: a search space odyssey[J]. IEEE Trans. on Neural Networks and Learning Systems, 2017, 28 (10): 2222- 2232.
doi: 10.1109/TNNLS.2016.2582924
|
17 |
XIE G, SHANGGUAN A Q, FEI R, et al. Motion trajectory prediction based on a CNN-LSTM sequential model[J]. Science China Information Sciences, 2020, 63, 212207.
doi: 10.1007/s11432-019-2761-y
|
18 |
MASMITJA I, MARTIN M, OREILLY T, et al. Dynamic robotic tracking of underwater targets using reinforcement learning[J]. Science Robotics, 2023, 8(80): eade7811.
|
19 |
COHEN A, TENG E, BERGES V P, et al. On the use and misuse of absorbing states in multi-agent reinforcement learning[EB/OL]. [2024-06-23]. https: //arxiv.org/abs/2111.05992.
|
20 |
FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. England: John Wiley & Sons Limited, 2011.
|
21 |
CHEN L N, JIN Y C, YIN Y. Ocean wave rendering with whitecap in the visual system of a maritime simulator[J]. Journal of Computing and Information Technology, 2017, 25 (1): 63- 76.
doi: 10.20532/cit.2017.1003327
|
22 |
FTRECHOT J. Realistic simulation of ocean surface using wave spectra[C]//Proc. of the International Conference on Computer Graphics Theory and Applications, 2006: 76−83.
|
23 |
SILVER D, HUBET T, SCHRITTWIESER J, et al. A general reinforcement learning algorithm that masters chess, Shogi, and go through Self-Play[J]. Science, 2018, 362 (6419): 1140- 1144.
doi: 10.1126/science.aar6404
|
24 |
FOERSTER J, FARQUHAR G, AFOURAS T, et al. Counterfactual multi-agent policy gradients[C]//Proc. of the 32nd AAAI Conference on Artificial Intelligence, 2018.
|
25 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proc. of the 31st Conference on Neural Information Processing Systems, 2017: 6000−6010.
|
26 |
LI X S, YE P J, JIN J C, et al. Data augmented deep behavioral cloning for urban traffic control operations under a parallel learning framework[J]. IEEE Trans. on Intelligent Transportation Systems, 2022, 23 (6): 5128- 5137.
doi: 10.1109/TITS.2020.3048151
|
27 |
YANG B, MA C F, XIA X F. An interrelated imitation learning method for heterogeneous drone swarm coordination[J]. IEEE Trans. on Emerging Topics in Computing, 2022, 10 (4): 1704- 1716.
doi: 10.1109/TETC.2022.3202297
|
28 |
ABLETT T, CHAN B, KELLY J. Learning from guided play: improving exploration for adversarial imitation learning with simple auxiliary tasks[J]. IEEE Robotics and Automation Letters, 2023, 8 (3): 1263- 1270.
doi: 10.1109/LRA.2023.3236882
|
29 |
SHI H B, SHI L, XU M, et al. End-to-end navigation strategy with deep reinforcement learning for mobile robots[J]. IEEE Trans. on Industrial Informatics, 2020, 16 (4): 2393- 2402.
doi: 10.1109/TII.2019.2936167
|
30 |
XIAO D M, WANG B, SUN Z Q, et al. Behavioral cloning based model generation method for reinforcement learning[C]//Proc. of the China Automation Congress, 2023: 6776−6781.
|