30 |
HWANGJ,LEEJ,PARKC.Collision avoidance control for formation flying of multiple spacecraft using artificial potential field[J].Advances in Space Research,2022,69(5):2197-2209.
doi: 10.1016/j.asr.2021.12.015
|
1 |
ZAPPULLAR,VIRGILI-LLOPJ,ZAGARISC,et al.Dynamic air-bearing hardware-in-the-loop testbed to experimentally evaluate autonomous spacecraft proximity maneuvers[J].Journal of Spacecraft and Rockets,2017,54(4):825-839.
doi: 10.2514/1.A33769
|
2 |
SHAOX Y,YAOW R,LIX L,et al.Direct trajectory optimization of free-floating space manipulator for reducing spacecraft variation[J].IEEE Robotics and Automation Letters,2022,7(2):2795-2802.
doi: 10.1109/LRA.2022.3143586
|
3 |
RYBUST,WOJTUNIKM,BASMADJIF L.Optimal collision-free path planning of a free-floating space robot using spline-based trajectories[J].Acta Astronautica,2022,190,395-408.
doi: 10.1016/j.actaastro.2021.10.012
|
4 |
WEIZ T,CHENT,WENH,et al.Experimental study on autonomous assembly of multiple spacecraft simulators in a spinning scenario[J].Acta Astronautica,2023,207,106-117.
doi: 10.1016/j.actaastro.2023.03.009
|
5 |
SANTAGUIDAL,ZHUZ H.Development of air-bearing microgravity testbed for autonomous spacecraft rendezvous and robotic capture control of a free-floating target[J].Acta Astronautica,2023,203,319-328.
doi: 10.1016/j.actaastro.2022.11.056
|
6 |
RYBUST,ALEKSIEJUKK,BASMADJIF L,et al.Application of the obstacle vector field method for trajectory planning of a planar manipulator in simulated microgravity[J].Artificial Satellites,2023,58(S1):171-187.
doi: 10.2478/arsa-2023-0021
|
7 |
FERNANDEZB R,HERRERAL,HUDSONJ,et al.Deve-lopment of a tip-tilt air-bearing testbed for physically emulating proximity-flight orbital mechanics[J].Advances in Space Research,2023,71(10):4332-4339.
doi: 10.1016/j.asr.2023.01.005
|
8 |
BASHNICKC,ULRICHS.Fast model predictive control for spacecraft rendezvous and docking with obstacle avoidance[J].Journal of Guidance, Control, and Dynamics,2023,46(5):998-1007.
doi: 10.2514/1.G007314
|
9 |
SHENH X,CASALINOL.Revisit of the three-dimensional orbital pursuit-evasion game[J].Journal of Guidance, Control, and Dynamics,2018,41(8):1823-1831.
doi: 10.2514/1.G003127
|
10 |
PONTANIM,CONWAYB A.Numerical solution of the three-dimensional orbital pursuit-evasion game[J].Journal of Guidance, Control, and Dynamics,2009,32(2):474-487.
doi: 10.2514/1.37962
|
11 |
VENIGALLAC,SCHEERESD J.Delta-V-based analysis of spacecraft pursuit-evasion games[J].Journal of Guidance, Control, and Dynamics,2021,44(11):1961-1971.
doi: 10.2514/1.G005901
|
12 |
SHIM M,YED,SUNZ W,et al.Spacecraft orbital pursuit-evasion games with J2 perturbations and direction-constrained thrust[J].Acta Astronautica,2023,202,139-150.
doi: 10.1016/j.actaastro.2022.10.004
|
13 |
STUPIK J, PONTANI M, CONWAY B. Optimal pursuit/evasion spacecraft trajectories in the hill reference frame[C]//Proc. of the AIAA/AAS Astrodynamics Specialist Conference, 2012: 4882-4896.
|
14 |
LIZ Y,ZHUH,YANGZ,et al.Saddle point of orbital pursuit-evasion game under J2-perturbed dynamics[J].Journal of Guidance, Control, and Dynamics,2020,43(9):1733-1739.
doi: 10.2514/1.G004459
|
15 |
YED,SHIM M,SUNZ W.Satellite proximate pursuit-evasion game with different thrust configurations[J].Aerospace Science and Technology,2020,99,105715.
doi: 10.1016/j.ast.2020.105715
|
16 |
SELVAKUMAR J, BAKOLAS E. A pursuit-evasion game in the orbital plane[C]//Proc. of the 27th AAS/AIAA Space Flight Mechanics Meeting, 2017: 474-485.
|
17 |
ZHAOL R,ZHANGY L,DANGZ H.PRD-MADDPG: an efficient learning-based algorithm for orbital pursuit-evasion game with impulsive maneuvers[J].Advances in Space Research,2023,72(2):211-230.
doi: 10.1016/j.asr.2023.03.014
|
18 |
赵力冉,党朝辉,张育林.空间轨道博弈: 概念、原理与方法[J].指挥与控制学报,2021,7(3):215-224.
|
|
ZHAOL R,DANGZ H,ZHANGY L.Orbital game: concepts, principles and methods[J].Journal of Command and Control,2021,7(3):215-224.
|
19 |
HUAB,HEJ,ZHANGH,et al.Spacecraft attitude reorientation control method based on potential function under complex constraints[J].Aerospace Science and Technology,2024,144,108738.
doi: 10.1016/j.ast.2023.108738
|
20 |
PALACIOSL,CERIOTTIM,RADICEG.Close proximity formation flying via linear quadratic tracking controller and artificial potential function[J].Advances in Space Research,2015,56(10):2167-2176.
doi: 10.1016/j.asr.2015.09.005
|
21 |
ROGERA B,MCINNESC R.Safety constrained free-flyer path planning at the international space station[J].Journal of Guidance, Control, and Dynamics,2000,23(6):971-979.
doi: 10.2514/2.4656
|
22 |
WANGC G,CHEND H,LIAOW H,et al.Autonomous obstacle avoidance strategies in the mission of large space debris removal using potential function[J].Advances in Space Research,2023,72(7):2860-2873.
doi: 10.1016/j.asr.2022.04.013
|
23 |
BADAWYA,MCINNESC R.On-orbit assembly using superquadric potential fields[J].Journal of Guidance, Control, and Dynamics,2008,31(1):30-43.
doi: 10.2514/1.28865
|
24 |
CAOL,QIAOD,XUJ W.Suboptimal artificial potential function sliding mode control for spacecraft rendezvous with obstacle avoidance[J].Acta Astronautica,2018,143,133-146.
doi: 10.1016/j.actaastro.2017.11.022
|
25 |
ZHOUH,DANGZ H,ZHANGY L,et al.Collision-free control of a nano satellite in the vicinity of China Space Station using Lorentz augmented composite artificial potential field[J].Acta Astronautica,2023,203,88-102.
doi: 10.1016/j.actaastro.2022.11.030
|
26 |
FRIUDENBERGP,KOZIOLS.Mobile robot rendezvous using potential fields combined with parallel navigation[J].IEEE Access,2018,6,16948-16957.
doi: 10.1109/ACCESS.2018.2802468
|
27 |
CURTIF,ROMANOM,BEVILACQUAR.Lyapunov-based thrusters'selection for spacecraft control: analysis and experimentation[J].Journal of Guidance, Control, and Dynamics,2010,33(4):1143-1160.
doi: 10.2514/1.47296
|
28 |
HOVELLK,ULRICHS.Deep reinforcement learning for spacecraft proximity operations guidance[J].Journal of Spacecraft and Rockets,2021,58(2):254-264.
doi: 10.2514/1.A34838
|
29 |
PARK H, ZAGARIS C, VIRGILI LLOP J, et al. Analysis and experimentation of model predictive control for spacecraft rendezvous and proximity operations with multiple obstacle avoi-dance[C]//Proc. of the AIAA/AAS Astrodynamics Specialist Conference, 2016: 5273-5289.
|