系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (9): 2939-2950.doi: 10.12305/j.issn.1001-506X.2025.09.15
• 系统工程 • 上一篇
收稿日期:
2023-06-15
出版日期:
2025-09-25
发布日期:
2025-09-16
通讯作者:
杜永浩
E-mail:yuanjianbo_0316@qq.com;duyonghao15@163.com;argguo@163.com;heyongming0@163.com
作者简介:
袁健波(2001—),男,博士研究生,主要研究方向为智能优化理论、方法与应用基金资助:
Jianbo YUAN(), Yonghao DU(
), Yingguo CHEN(
), Yongming HE(
)
Received:
2023-06-15
Online:
2025-09-25
Published:
2025-09-16
Contact:
Yonghao DU
E-mail:yuanjianbo_0316@qq.com;duyonghao15@163.com;argguo@163.com;heyongming0@163.com
摘要:
针对点群、大区域等新型复杂目标的成像需求,为提高卫星资源的利用效率和观测任务的完成收益,研究面向点群与大区域目标的成像卫星任务规划模型与算法。首先,构建统一的决策模型,引入条带延长率作为决策变量解决点群目标合并成像表示的问题;考虑执行时序、电量、固存、转换时间等约束;针对目标特点,分别建立基于条带延长率、网格覆盖率的任务收益模型。然后,设计实现一种结合禁忌策略的自适应波动温控模拟退火算法,通过波动温控和内循环次数更新策略提升全局寻优能力,并引入禁忌策略增强局部搜索能力,提供自适应和高效智能的模型求解手段。仿真实验表明模型与算法能够有效提升规划效果。所提模型与算法适用于面向点群与大区域目标的成像卫星任务规划问题。
中图分类号:
袁健波, 杜永浩, 陈盈果, 何永明. 面向点群与大区域目标的成像卫星任务规划模型与算法研究[J]. 系统工程与电子技术, 2025, 47(9): 2939-2950.
Jianbo YUAN, Yonghao DU, Yingguo CHEN, Yongming HE. Research on imaging satellite mission planning model and algorithm for point-cluster and large-region targets[J]. Systems Engineering and Electronics, 2025, 47(9): 2939-2950.
表1
符号说明"
符号 | 释义 |
T | 任务集,T = |
点群目标任务集、大区域目标任务集 | |
A | 大区域目标集合,A = {ai | i=1,2,3···} |
S | 卫星集合,S = {sj | j = 1,2,3···} |
H | 数传站集合,H = {hk | k = 1,2,3···} |
G | 离散化的网格点集合,G = {gm | m = 1,2,3···} |
ci | 第i个大区域目标的总面积 |
第m个网格点包含大区域目标ai的面积 | |
Xi | 任务ti的成像机会集合 |
Yi | 任务ti的数传机会集合 |
xij | 0-1决策变量,若任务ti的成像动作在其第j个成像机会内执行,则 xij = 1;否则xij = 0 |
yij | 0-1决策变量,若任务ti的数传动作在其第j个数传机会内执行,则 yij = 1;否则yij = 0 |
zi | 决策变量,表示任务ti的成像条带在其成像方向上的延长比例, 简称条带延长率 |
fi | 任务ti的收益 |
mi | 任务ti成像动作所产生的数据量 |
qi | 任务ti成像动作耗电量 |
任务ti成像动作的开始时间、结束时间 | |
任务ti数传动作的开始时间、结束时间 | |
so(ti) | 执行任务ti成像动作的卫星 |
sd(ti) | 执行任务ti数传动作的卫星 |
s(ti) | 执行任务ti的卫星 |
h(ti) | 执行任务ti的数传站 |
o(ti) | 执行任务ti所在的卫星轨道 |
Oj | 卫星sj的轨道集合 |
ojk | 卫星sj第k次过境形成的轨道 |
Mj | 卫星sj的固存容量上限 |
Qj | 卫星sj的电量上限 |
∆K( | 任务 |
∆N | 卫星执行成像动作与数传动作间转换时间最小值 |
∆D | 同一卫星对不同数传站执行数传动作转换时间最小值 |
∆P | 同一数传站接收不同卫星数传动作转换时间最小值 |
Tj | 卫星sj执行的任务序列 |
w(ti, time) | 0-1变量,若time时刻下任务ti已完成成像动作, 则w(ti, time) = 1,否则w(ti, time) = 0 |
d(ti, time) | 0-1变量,若time时刻下任务ti已完成数传动作, 则d(ti, time) = 1,否则d(ti, time) = 0 |
vm | 0-1变量,若网格gm被条带所覆盖,则vm = 1;否则vm = 0 |
φi | 第i个大区域目标的覆盖率 |
1 |
LIU X L, LAPORTE G, CHEN Y W, et al. An adaptive large neighborhood search metaheuristic for agile satellite scheduling with time dependent transition time[J]. Computers and Operations Research, 2017, 86, 41- 53.
doi: 10.1016/j.cor.2017.04.006 |
2 |
XU R, CHEN H P, LIANG X L, et al. Priority based constructive algorithms for scheduling agile earth observation satellites with total priority maximization[J]. Expert Systems with Applications, 2016, 51, 195- 206.
doi: 10.1016/j.eswa.2015.12.039 |
3 |
QI J T, GUO J J, WANG M M, et al. A cooperative autonomous scheduling approach for multiple earth observation satellites with intensive missions[J]. IEEE Access, 2021, 9, 61646- 61661.
doi: 10.1109/ACCESS.2021.3075059 |
4 | WANG S, LIN Z, CHENG J H, et al. Task scheduling and attitude planning for agile earth observation satellite with intensive tasks[J]. Aerospace Science and Technology, 2019, 90 (4): 23- 33. |
5 |
BARKAOUI M, BERGER J. A new hybrid genetic algorithm for the collection scheduling problem for a satellite constellation[J]. Journal of the Operational Research Society, 2020, 71 (9): 1390- 1410.
doi: 10.1080/01605682.2019.1609891 |
6 |
CHANG Z X, ZHOU Z B, YAO F, et al. Observation scheduling problem for AEOS with a comprehensive task clustering[J]. Journal of Systems Engineering and Electronics, 2021, 32 (2): 347- 364.
doi: 10.23919/JSEE.2021.000029 |
7 |
WU G H, WANG H L, PEDRYCZ W, et al. Satellite observation scheduling with a novel adaptive simulated annealing algorithm and a dynamic task clustering strategy[J]. Computers and Industrial Engineering, 2017, 113, 576- 588.
doi: 10.1016/j.cie.2017.09.050 |
8 |
LU Z H, SHEN X, LI D R, et al. Integrated imaging mission planning modeling method for multi-type targets for super-agile earth observation satellite[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 4156- 4169.
doi: 10.1109/JSTARS.2022.3176951 |
9 |
LIU X L, BAI B C, CHEN Y W, et al. Multi satellites scheduling algorithm based on task merging mechanism[J]. Applied Mathematics and Computation, 2014, 230, 687- 700.
doi: 10.1016/j.amc.2013.12.109 |
10 |
DU B, LI S. A new multi-satellite autonomous mission allocation and planning method[J]. Acta Astronautica, 2019, 163, 287- 298.
doi: 10.1016/j.actaastro.2018.11.001 |
11 |
ZHAO Y B, DU B, LI S. Agile satellite mission planning via task clustering and double-layer tabu algorithm[J]. Computer Modeling in Engineering and Sciences, 2020, 122 (1): 235- 257.
doi: 10.32604/cmes.2020.08070 |
12 | 潘耀, 饶启龙, 池忠明, 等. 改进的遥感卫星成像任务单轨最优团划分聚类方法[J]. 上海航天, 2018, 35 (3): 34- 40. |
PAN Y, RAO Q L, CHI Z M, et al. Improved clustering method of spot target based on best clique partition in single orbit for remote sensing satellite imaging[J]. Aerospace Shanghai, 2018, 35 (3): 34- 40. | |
13 |
张聪, 袁利, 王云鹏, 等. 基于智能聚类的遥感卫星成像任务自主聚合方法[J]. 空间控制技术与应用, 2022, 48 (5): 47- 55.
doi: 10.3969/j.issn.1674-1579.2022.05.006 |
ZHANG C, YUAN L, WANG Y P, et al. Autonomous aggregation method for imaging task of observation satellite based on intelligent clustering[J]. Aerospace Control and Application, 2022, 48 (5): 47- 55.
doi: 10.3969/j.issn.1674-1579.2022.05.006 |
|
14 | 耿远卓, 郭延宁, 李传江, 等. 敏捷凝视卫星密集点目标聚类与最优观测规划[J]. 控制与决策, 2020, 35 (3): 613- 621. |
GENG Y Z, GUO Y N, LI C J, et al. Optimal mission planning with task clustering for intensive point targets observation of staring mode agile satellite[J]. Control and Decision, 2020, 35 (3): 613- 621. | |
15 |
余婧, 喜进军, 于龙江, 等. 敏捷卫星同轨多条带拼幅成像模式研究[J]. 航天器工程, 2015, 24 (2): 27- 34.
doi: 10.3969/j.issn.1673-8748.2015.02.005 |
YU J, XI J J, YU L J, et al. Study of one-orbit multi-stripes splicing imaging for agile satellite[J]. Spacecraft Engineering, 2015, 24 (2): 27- 34.
doi: 10.3969/j.issn.1673-8748.2015.02.005 |
|
16 |
LEMAITRE M, VERFAILLIE G, JOUHAUD F, et al. Selecting and scheduling observations of agile satellites[J]. Aerospace Science and Technology, 2002, 6 (5): 367- 381.
doi: 10.1016/S1270-9638(02)01173-2 |
17 | 章登义, 郭雷, 王骞, 等. 一种面向区域目标的敏捷成像卫星单轨调度方法[J]. 武汉大学学报(信息科学版), 2014, 39 (8): 901- 905. |
ZHANG D Y, GUO L, WANG Q, et al. An improved single-orbit scheduling method for agile imaging satellite towards area target[J]. Geomatics and Information Science of Wuhan University, 2014, 39 (8): 901- 905. | |
18 |
杨文沅, 贺仁杰, 耿西英智, 等. 面向区域目标的敏捷卫星非沿迹条带划分方法[J]. 科学技术与工程, 2016, 16 (22): 82- 87.
doi: 10.3969/j.issn.1671-1815.2016.22.014 |
YANG W Y, HE R J, GENG X Y Z, et al. Area target oriented non-along-with-track strip partitioning method for agile satellite[J]. Science Technology and Engineering, 2016, 16 (22): 82- 87.
doi: 10.3969/j.issn.1671-1815.2016.22.014 |
|
19 | GU Y, HAN C, CHEN Y H, et al. Large region targets observation scheduling by multiple satellites using resampling particle swarm optimization[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (2): 1800- 1815. |
20 |
LU Z H, SHEN X, LI D R, et al. Multiple super-agile satellite collaborative mission planning for area target imaging[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 117, 103211.
doi: 10.1016/j.jag.2023.103211 |
21 | 陈晟宗, 张纪会, 于守水, 等. 求解旅行商问题的波动温控模拟退火算法[J]. 控制与决策, 2023, 38 (4): 911- 920. |
CHEN S Z, ZHANG J H, YU S S, et al. A Simulated annealing algorithm with wave temperature control for the traveling salesman problem[J]. Control and Decision, 2023, 38 (4): 911- 920. | |
22 |
ZHANG C, CHEN J Y, LI Y B, et al. Satellite group autonomous operation mechanism and planning algorithm for marine target surveillance[J]. Chinese Journal of Aeronautics, 2019, 32 (4): 991- 998.
doi: 10.1016/j.cja.2019.02.005 |
23 |
SONG Y J, XING L N, CHEN Y W. Two-stage hybrid planning method for multi-satellite joint observation planning problem considering task splitting[J]. Computers and Industrial Engineering, 2022, 174, 108795.
doi: 10.1016/j.cie.2022.108795 |
24 |
ZHIBO E, SHI R H, GAN L, et al. Multi-satellites imaging scheduling using individual reconfiguration based integer coding genetic algorithm[J]. Acta Astronautica, 2021, 178, 645- 657.
doi: 10.1016/j.actaastro.2020.08.041 |
25 |
DU Y H, WANG T, XIN B, et al. A data-driven parallel scheduling approach for multiple agile earth observation satellites[J]. IEEE Trans. on Evolutionary Computation, 2020, 24 (4): 679- 693.
doi: 10.1109/TEVC.2019.2934148 |
26 |
JIANG X M, SONG Y J, XING L N. Dual-population artificial bee colony algorithm for joint observation satellite mission planning problem[J]. IEEE Access, 2022, 10, 28911- 28921.
doi: 10.1109/ACCESS.2022.3157286 |
27 |
SERGE R, IGOR T, SERGEI I, et al. Quantum algorithms applied to satellite mission planning for earth observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 7062- 7075.
doi: 10.1109/JSTARS.2023.3287154 |
28 | CHEN Y X, SHEN X, ZHANG G, et al. Large-scale multi-objective imaging satellite task planning algorithm for vast area mapping[J]. Remote Sensing, 2023, 15 (17): 4178. |
29 | LONG J, WU S M, HAN X D, et al. Autonomous task planning method for multi-satellite system based on a hybrid genetic algorithm[J]. Aerospace, 2023, 10 (1): 70. |
30 |
LIN F T, KAO C Y, HSU C C. Applying the genetic approach to simulated annealing in solving some NP-Hard problems[J]. IEEE Trans. on Systems, Man, and Cybernetics, 1993, 23 (6): 1752- 1767.
doi: 10.1109/21.257766 |
[1] | 李阳阳, 罗俊仁, 张万鹏, 项凤涛. 多星协同观测遗传-演进双层任务规划算法[J]. 系统工程与电子技术, 2024, 46(6): 2044-2053. |
[2] | 刘玉杰, 崔凯凯, 韩维, 李樾. 基于IPSO的舰载机出动离场规划研究[J]. 系统工程与电子技术, 2024, 46(4): 1337-1345. |
[3] | 尧泽昆, 王超, 施庆展, 张少卿, 袁乃昌. 基于改进离散模拟退火遗传算法的雷达网协同干扰资源分配模型[J]. 系统工程与电子技术, 2024, 46(3): 824-830. |
[4] | 饶悦, 杨健, 孙国敏, 张伟, 邵怀宗, 林静然. 基于改进SA-NSGAⅡ的多波束卫星动态资源分配方法[J]. 系统工程与电子技术, 2024, 46(12): 4222-4230. |
[5] | 吴立尧, 苏析超, 王垒, 潘子双. 有人/无人机编队队形集结控制研究[J]. 系统工程与电子技术, 2023, 45(7): 2192-2202. |
[6] | 常雪凝, 石建迈, 陈超, 黄金才. 基于匈牙利-模拟退火算法的多阶段武器目标分配方法[J]. 系统工程与电子技术, 2023, 45(11): 3516-3523. |
[7] | 余婧, 雍恩米, 陈汉洋, 郝东, 张显才. 面向多无人机协同对地攻击的双层任务规划方法[J]. 系统工程与电子技术, 2022, 44(9): 2849-2857. |
[8] | 张彦, 叶春茂, 李璋峰, 鲁耀兵. 多种转发干扰下的脉内脉间波形综合优化设计[J]. 系统工程与电子技术, 2022, 44(5): 1495-1501. |
[9] | 路复宇, 童宁宁, 冯为可, 万鹏程. 自适应杂交退火粒子群优化算法[J]. 系统工程与电子技术, 2022, 44(11): 3470-3476. |
[10] | 刘越, 仲小清, 付金宇, 李想. 基于混合优化方法的立体匹配算法[J]. 系统工程与电子技术, 2020, 42(12): 2692-2699. |
[11] | 弋佳东, 杨洁. 基于IFOA-SA-BP神经网络的雷达信号识别[J]. 系统工程与电子技术, 2020, 42(12): 2735-2741. |
[12] | 徐涛, 吴志帅, 卢敏, 吕宗磊, 李忠虎. 面向拥堵问题的枢纽航线网络优化模型[J]. 系统工程与电子技术, 2020, 42(11): 2553-2559. |
[13] | 刘建业, 王华, 周晚萌. 基于GA-SA的低轨星座传感器资源调度算法[J]. 系统工程与电子技术, 2018, 40(11): 2476-. |
[14] | 何永明, 陈英武, 邢立宁, 袁驵, 李国梁. 面向新型成像卫星自主任务规划系统设计[J]. 系统工程与电子技术, 2017, 39(4): 806-813. |
[15] | 汪民乐, 范阳涛. 基于效果的常规导弹火力分配模型智能求解算法[J]. 系统工程与电子技术, 2017, 39(11): 2509-2514. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||