1 |
王雪松,李健兵,徐丰,等.电磁空间信息资源的认知与利用[J].中国科学基金,2021,35(5):682-687.
|
|
WANGX S,LIJ B,XUF,et al.Cognition and utilization of electromagnetic space information resources[J].China Science Foundation,2021,35(5):682-687.
|
2 |
LIU Z, MAO H, WU C Y, et al. A convnet for the 2020s[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11976-11986.
|
3 |
DOSOVITSKIY A. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. [2024-06-03]. http://arXiv:2010.11929, 2020.
|
4 |
HOWARD A G. Mobilenets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2024-06-03]. http://arXiv:1704.04861, 2017.
|
5 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
6 |
KRIZHEVSKYA,SUTSKEVERI,HINTONG E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
|
7 |
O'SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//Proc. of the on Engineering Applications of Neural Networks, 2016: 213-226.
|
8 |
O'SHEAT J,ROYT,CLANCYT C.Over-the-air deep learning based radio signal classification[J].IEEE Journal of Selected Topics in Signal Processing,2018,12(1):168-179.
|
9 |
刘伟,李钦,牛朝阳,等.低信噪比下基于分裂EfficientNet网络的雷达信号调制方式识别[J].电子学报,2023,51(3):675-686.
|
|
LIUW,LIQ,NIUC Y,et al.Radar signal modulation method recognition based on split EfficientNet network under low signal-to-noise ratio[J].Chinese Journal of Electronics,2023,51(3):675-686.
|
10 |
GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. [2024-06-03]. http://arXiv:1412.6572, 2014.
|
11 |
QIANY G,ZHANGX M,WANGB,et al.Adversarial training defense based on second-order adversarial examples[J].Journal of Electronics & Information Technology,2021,43(11):3367-3373.
|
12 |
赵宏佳, 张多纳, 鲁远耀, 等. 领域知识内嵌的电磁信号调制方式智能识别[EB/OL]. [2024-06-03]. https://doi.org/10.13700/j.bh.1001-5965.2023.0746.
|
|
ZHAO H J, ZHANG D N, LU Y Y, et al. Intelligent recognition of electromagnetic signal modulation mode embedded in domain knowledge[EB/OL]. [2024-06-03]. https://doi.org/10.13700/j.bh.1001-5965.2023.0746.
|
13 |
SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]//Proc. of the 2nd Inter-national Conference on Learning Representations, 2014.
|
14 |
YE N, LI Q, ZHOU X Y, et al. Amata: an annealing mechanism for adversarial training acceleration[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2021.
|
15 |
LINY,ZHAOH J,MAX F,et al.Adversarial attacks in modulation recognition with convolutional neural networks[J].IEEE Trans.on Reliability,2020,70(1):389-401.
|
16 |
ZHAO H J, LIN Y, GAO S, et al. Evaluating and improving adversarial attacks on DNN-based modulation recognition[C]// Proc. of the Globecom IEEE Global Communications Conference, 2021.
|
17 |
KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial examples in the physical world[EB/OL]. [2024-06-03]. https://arxiv.org/abs/1607.02533?context=cs.
|
18 |
MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. Deepfool: a simple and accurate method to fool deep neural networks[C]//Proc. of the IEEE Conference On Computer Vision and Pattern Recognition, 2016: 2574-2582.
|
19 |
MA R, ZHU C, LU M, et al. Concealed electronic countermeasures of radar signal with adversarial examples[EB/OL]. [2024-06-03]. http://arXiv:2310.08292, 2023.
|
20 |
PAPERNOT N, MCDANIEL P, JHA S, et al. The limitations of deep learning in adversarial settings[C]//Proc. of IEEE European Symposium on Security and Privacy, 2016: 372-387.
|
21 |
周侠,张剑,李宁安.基于显著图的电磁信号对抗样本生成方法[J].电子学报,2023,51(7):1917-1928.
|
|
ZHOUX,ZHANGJ,LIN A.Electromagnetic signal adversarial example generation method based on saliency graph[J].Chinese Journal of Electronics,2023,51(7):1917-1928.
|
22 |
李哲铭,王晋东,侯建中,等.基于显著区域优化的对抗样本攻击方法[J].计算机工程,2023,49(9):246-255, 264.
|
|
LIZ M,WANGJ D,HOUJ Z,et al.Adversarial sample attack method based on significant region optimization[J].Computer Engineering,2023,49(9):246-255, 264.
|
23 |
王满喜,史明佳,陆科宇,等.电磁信号调制识别中的对抗性攻击技术研究[J].无线电通信技术,2022,48(6):1098-1104.
|
|
WANGM X,SHIM J,LUK Y,et al.Research on adversarial attack technology in electromagnetic signal modulation and recognition[J].Radio Communication Technology,2022,48(6):1098-1104.
|
24 |
张多纳,赵宏佳,鲁远耀,等.电磁信号调制方式识别: 现状、方法和展望[J].信息与控制,2023,52(1):59-74.
|
|
ZHANGD N,ZHAOH J,LUY Y,et al.Radio signal modulation recognition: research, methods and prospects[J].Information and Control,2023,52(1):59-74.
|
25 |
黄知涛,柯达,王翔.电磁信号对抗样本攻击与防御发展研究[J].信息对抗技术,2023,2(4):37-52.
|
|
HUANGZ T,KED,WANGX.Research on the development of electromagnetic signal countermeasure sample attack and defense[J].Information Countermeasure Technology,2023,2(4):37-52.
|
26 |
韩超,秦若熙,王林元,等.无线通信中的智能识别神经网络对抗攻击技术综述[J].电讯技术,2023,63(6):918-926.
|
|
HANC,QINR X,WANGL Y,et al.A review of intelligent recognition neural network adversarial attack technology in wireless communication[J].Tele-Communication Technology,2023,63(6):918-926.
|
27 |
ZHANGF X,LUOC C,XUJ L,et al.Deep learning based automatic modulation recognition: models, datasets, and challenges[J].Digital Signal Processing,2022,129,103650.
|
28 |
KE D, HUANG Z T, WANG X, et al. Application of adver sarial examples in communication modula-tion classification[C]// Proc. of the International Conference on Data Mining Workshops, 2019: 877-882.
|
29 |
CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]//Proc. of the IEEE Symposium on Security and Privacy, 2017: 39-57.
|