系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (11): 2450-2460.doi: 10.3969/j.issn.1001-506X.2020.11.06

• 电子技术 • 上一篇    下一篇

全偏振参量低秩稀疏分解伪彩色图像融合

徐国明1,2,3(), 袁宏武2,3(), 薛模根3(), 王峰3()   

  1. 1. 安徽大学互联网学院, 安徽 合肥 230039
    2. 安徽新华学院信息工程学院, 安徽 合肥 230088
    3. 陆军炮兵防空兵学院偏振光成像探测技术安徽省重点实验室, 安徽 合肥 230031
  • 收稿日期:2020-03-29 出版日期:2020-11-01 发布日期:2020-11-05
  • 作者简介:徐国明(1979-),男,副教授,博士,主要研究方向为稀疏表示、计算机视觉、图像处理。E-mail:xgm121@163.com|袁宏武(1979-),男,副教授,博士,主要研究方向为偏振成像探测、机器学习。E-mail:931030372@qq.com|薛模根(1964-),男,教授,博士,主要研究方向为光电防御、图像处理。E-mail:xuemogen@126.com|王峰(1972-),男,教授,博士,主要研究方向为新型光电成像探测技术。E-mail:wfissky@sina.com
  • 基金资助:
    国家自然科学基金(61379105);安徽省自然科学基金(1608085MF140);安徽省自然科学基金(1908085MF208);中国博士后科学基金(2016M592961);陆军装备部十三五预研子课题(GFZX0403260204);安徽省高校自然科学研究重点项目(KJ2018A0587);安徽省高校自然科学研究重点项目(KJ2019A0906)

Full polarization parameters low-rank and sparse factorization for pseudo color image fusion

Guoming XU1,2,3(), Hongwu YUAN2,3(), Mogen XUE3(), Feng WANG3()   

  1. 1. College of Internet, Anhui University, Hefei 230039, China
    2. Information Engineering College, Anhui Xinhua University, Hefei 230088, China
    3. Anhui Province Key Laboratory of Polarized Imaging Detecting
  • Received:2020-03-29 Online:2020-11-01 Published:2020-11-05

摘要:

偏振图像伪彩色融合对提高视觉感知和目标判读具有重要意义,利用空间调制型全偏振参量矩阵的低秩和稀疏特性,提出基于贝叶斯概率鲁棒性矩阵分解融合方法。首先,根据偏振调制和解析算法构造偏振参量矩阵,同时合成强度图像;其次,对参量矩阵进行基于改进的贝叶斯概率参量矩阵分解,降低背景噪声和亮度变化等干扰,分别获得参量图像的稀疏和低秩成分;然后利用方差、清晰度和信息熵进行模糊积分,获得显著性参量图像,与合成强度图像一起进行像素级增强;最后,经直方图规定化和IHS颜色映射,得到伪彩色融合结果。实验选择多种材质与目标的仿真和实测数据进行验证,通过主观视觉效果和客观指标比较,验证了其有效性。

关键词: 偏振成像, 图像融合, 低秩稀疏, 鲁棒性矩阵分解

Abstract:

The polarization image pseudo color fusion is of great significance to improve visual perception and object interpretation. Based on the low-rank and sparse prior of the spatially modulated full-polarization parameter matrix, a fusion method is proposed via Bayesian probability robust matrix factorization. Firstly, the polarization parameter matrix is constructed according to the polarization modulation and analytic algorithm, and the intensity image is synthesized at the same time. Secondly, the sparse and low-rank components of the parameter images are obtained via improved Bayesian robust matrix factorization (BRMF). The influence of background noise and brightness change is reduced via BRMF. Then, the saliency parameter image is obtained by using the Choquet fuzzy integral of variance, definition and entropy. The saliency parameter image is carried out together with the synthesized intensity image to enforce pixel level enhancement. Finally, the pseudo color fusion image is obtained by the processing of histogram normalization and IHS color mapping. The experiment is performed with simulation and measurement images of different materials and objects. The subjective visual results and objective evaluation verify the effectiveness of the proposed method.

Key words: polarization imaging, image fusion, low-rank and sparse, robust matrix factorization

中图分类号: