

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (12): 3966-3980.doi: 10.12305/j.issn.1001-506X.2025.12.21
• “基于模型的系统架构设计与验证技术”专栏 • 上一篇
宋则隆, 陈瑾, 周诠, 谭一凡, 赵嘉熙, 郑晓晨
收稿日期:2025-01-08
修回日期:2025-03-28
出版日期:2025-07-08
发布日期:2025-07-08
通讯作者:
郑晓晨
作者简介:宋则隆(1999—),男,博士研究生,主要研究方向为基于模型的系统工程、AI4MBSE、认知数字孪生基金资助:Zelong SONG, Jin CHEN, Quan ZHOU, Yifan TAN, Jiaxi ZHAO, Xiaochen ZHENG
Received:2025-01-08
Revised:2025-03-28
Online:2025-07-08
Published:2025-07-08
Contact:
Xiaochen ZHENG
摘要:
随着科学技术的高速发展,现代产品和系统的复杂度大幅增加,导致设计信息量呈爆炸式增长,为复杂系统下的基于模型的系统工程(model-based systems engineering, MBSE)带来了巨大挑战。人工智能(artificial intelligence, AI)为这一问题提供了可行的解决方案。然而,AI赋能MBSE(AI for MBSE, AI4MBSE)概念自提出以来尚未经过相关综述研究。为了探讨AI4MBSE的研究现状并提出展望,总结了MBSE和AI的发展概况,介绍AI4MBSE的概念,利用相关数据库检索近6年与AI4MBSE相关的文献,分析并汇总AI4MBSE的研究现状与关键技术,最后提出AI4MBSE的研究空白、研究展望和未来研究趋势。本文对AI4MBSE的发展有一定推动作用,对提升MBSE自动化、数字化与智能化水平具有重要意义。
中图分类号:
宋则隆, 陈瑾, 周诠, 谭一凡, 赵嘉熙, 郑晓晨. AI赋能基于模型的系统工程研究现状与展望[J]. 系统工程与电子技术, 2025, 47(12): 3966-3980.
Zelong SONG, Jin CHEN, Quan ZHOU, Yifan TAN, Jiaxi ZHAO, Xiaochen ZHENG. Current state and prospects of research on AI for model-based systems engineering[J]. Systems Engineering and Electronics, 2025, 47(12): 3966-3980.
| 1 | BLANCHARD B S, FABRYCKY W J, FABRYCKY W J. Systems engineering and analysis[M]. New Jersey: Prentice Hall, 1990. |
| 2 | GLUSHKO R J, MCGRATH T. Document engineering for e-business[C]//Proc. of the ACM Symposium on Document Engineering, 2002: 42−48. |
| 3 | GORDY J L W, NOEL D R, RHOADS R P, et al. Process change in systems engineering: from document-driven to model-based approach[C]//Proc. of the INCOSE International Symposium, 1997, 7(1): 281−287. |
| 4 | ADEDJOUMA M, THOMAS T, MRAIDHA C, et al. From document-based to model-based system and software engineering[C]//Proc. of the OSS4MDE, 2016, 1835: 27−36. |
| 5 | RAMOS A L, FERREIRA J V, BARCELO J. Model-based systems engineering: an emerging approach for modern systems[J]. IEEE Trans. on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2011, 42 (1): 101- 111. |
| 6 | 董梦如, 王国新, 鲁金直, 等. 基于WordCloud技术的MBSE发展态势研究[J]. 系统工程与电子技术, 2024, 46 (2): 534- 548. |
| DONG M R, WANG G X, LU J Z, et al. Research on the development trend of MBSE based on WordCloud technology[J]. Systems Engineering and Electronics, 2024, 46 (2): 534- 548. | |
| 7 |
ZHENG X C, LU J Z, KIRITSIS D. The emergence of cognitive digital twin: vision, challenges and opportunities[J]. International Journal of Production Research, 2022, 60 (24): 7610- 7632.
doi: 10.1080/00207543.2021.2014591 |
| 8 |
PEPE K, HUTCHISON N. AI4SE and SE4AI: setting the roadmap toward human-machine co-learning[J]. Insight, 2022, 25 (4): 80- 84.
doi: 10.1002/inst.12417 |
| 9 | LEE M W. Top-level implementation of AI4SE, SE4AI for the AI-SE convergence in the defense acquisition[J]. Journal of the Korean Society of Systems Engineering, 2023, 19 (2): 135- 144. |
| 10 | WYMORE A W. Model-based systems engineering[M]. Boca Raton: CRC Press, 2018. |
| 11 | KALOOR T, BAROSAN I I. A MBSE framework for the design and analysis of complex automotive systems using SysML and PCE[C]//Proc. of the IEEE 21st International Conference on Software Architecture Companion, 2024: 191−198. |
| 12 | 焦洪臣, 雷勇, 张宏宇, 等. 基于MBSE的航天器系统建模分析与设计研制方法探索[J]. 系统工程与电子技术, 2021, 43 (9): 2516- 2525. |
| JIAO H C, LEI Y, ZHANG H Y, et al. Research on modeling and design method of spacecraft system based on MBSE[J]. Systems Engineering and Electronics, 2021, 43 (9): 2516- 2525. | |
| 13 | 苗学问, 董骁雄, 钱征文, 等. 基于DoDAF的航空装备智能保障系统体系结构建模[J]. 系统工程与电子技术, 2024, 46 (2): 640- 648. |
| MIAO X W, DONG X X, QIAN Z W, et al. Architecture modeling of aviation equipment intelligent support system based on DoDAF[J]. Systems Engineering and Electronics, 2024, 46 (2): 640- 648. | |
| 14 | 鲁金直, 王国新, 阎艳, 等. 基于多架构建模语言的系统工程建模方法[J]. 系统工程学报, 2023, 38 (2): 146- 160. |
| LU J Z, WANG G X, YAN Y, et al. System engineering modeling methodology based on mutil-architectural modeling language[J]. Journal of Systems Engineering, 2023, 38 (2): 146- 160. | |
| 15 | International Council on Systems Engineering. Systems engineering vision 2020[M]. San Diego: International Council on Systems Engineering, 2007. |
| 16 | BONNER M, ZELLER M, SCHULZ G, et al. LLM-based approach to automatically establish traceability between requirements and MBSE[C]//Proc. of the INCOSE International Symposium, 2024, 34(1): 2542−2560. |
| 17 | JOHNS B, CARROLL K, MEDINA C, et al. AI systems modeling enhancer (AI-SME): initial investigations into a ChatGPT-enabled MBSE modeling assistant[C]//Proc. of the INCOSE International Symposium, 2024, 34(1): 1149−1168. |
| 18 |
ZHENG X C, HU X D, ARISTA R, et al. A semantic-driven tradespace framework to accelerate aircraft manufacturing system design[J]. Journal of Intelligent Manufacturing, 2024, 35, 175- 198.
doi: 10.1007/s10845-022-02043-7 |
| 19 | WEILAND K J, HOLLADAY J. Model-based systems engineering pathfinder: informing the next steps[C]//Proc. of the INCOSE International Symposium, 2017, 27(1): 1594−1608. |
| 20 | HOLLADAY J B, KNIZHNIK J, WEILAND K J, et al. MBSE infusion and modernization initiative (MIAMI): “Hot” benefits for real NASA applications[C]//Proc. of the IEEE Aerospace Conference, 2019. |
| 21 | BAJWA A, MACKINNON J P, PEPEN M A, et al. Strategic perspectives on the future of systems engineering at NASA[R]. Cleveland: Glenn Research Center, 2020. |
| 22 | WEILAND K J. Future model-based systems engineering vision and strategy bridge for NASA[R]. Cleveland: Glenn Research Center, 2021. |
| 23 | IWATA C, INFELD S, BRACKEN J M, et al. Model-based systems engineering in concurrent engineering centers[C]//Proc. of the AIAA Space Conference and Exposition, 2015. |
| 24 | VIPAVETZ K, SHULL T A, INFELD S, et al. Interface management for a NASA flight project using model-based systems engineering (MBSE)[C]//Proc. of the INCOSE International Symposium, 2016, 26(1): 1129−1144. |
| 25 | GOUGH K M, PHOJANAMONGKOLKIJ N. Employing model-based systems engineering (MBSE) on a NASA aeronautic research project: a case study[C]//Proc. of the Aviation Technology, Integration, and Operations Conference, 2018: 3361. |
| 26 | 郄永军. 体系化推进系统工程流程、方法和工具平台在航空产品开发中的应用[J]. 航空制造技术, 2014 (18): 64- 67. |
| QIE Y J. Systematically promote applicalition of system engineering process, method and tool platform in aviation product research and development[J]. Aeronautical Manufacturing Technology, 2014 (18): 64- 67. | |
| 27 | 白洁, 吕伟, 张磊, 等. 基于模型的系统工程在机载电子系统领域的应用[J]. 航空制造技术, 2015 (4): 96- 99. |
| BAI J, LYU W, ZHANG L, et al. Application of model-based system engineering in area of airborne avionics system[J]. Aeronautical Manufacturing Technology, 2015 (4): 96- 99. | |
| 28 | 丁健, 田峰, 金颖. 基于模型的系统工程(MBSE)方法在地面站研制中的应用研究[J]. 中国高新技术企业, 2016 (12): 47- 49. |
| DING J, TIAN F, JIN Y. Research on the application of model-based systems engineering (MBSE) method in the development of ground stations[J]. China High-Tech Enterprises, 2016 (12): 47- 49. | |
| 29 | 王雨农, 毕文豪, 张安, 等. 基于DoDAF的民机MBSE研制方法[J]. 系统工程与电子技术, 2021, 43 (12): 3579- 3585. |
| WANG Y N, BI W H, ZHANG A, et al. DoDAF-based civil aircraft MBSE development method[J]. Systems Engineering and Electronics, 2021, 43 (12): 3579- 3585. | |
| 30 | 欧海英, 钟益林, 许晓冬, 等. 基于模型的数字工程是汽车创新研制的必由之路[C]//中国汽车工程学会年会, 2023: 361-367. |
| OU H Y, ZHONG Y L, XU X D, et al. Model-based digital engineering is the only way of automobile innovation R&D[C]//Proc. of the Annual Conference of the Society of Automotive Engineers of China, 2023: 361−367. | |
| 31 | 张贺, 夏鑫, 蒋振鸣, 等. AI软件系统工程化技术与规范专题前言[J]. 软件学报, 2023, 34 (9): 3939- 3940. |
| ZHANG H, XIA X, JIANG Z M, et al. Special topic on engineering technologies and standards for AI software systems preface[J]. Journal of Software, 2023, 34 (9): 3939- 3940. | |
| 32 |
ZHANG X, WU B, ZHANG X, et al. An effective MBSE approach for constructing industrial robot digital twin system[J]. Robotics and Computer-Integrated Manufacturing, 2023, 80, 102455.
doi: 10.1016/j.rcim.2022.102455 |
| 33 | D’AMBROSIO J, SOREMEKUN G. Systems engineering challenges and MBSE opportunities for automotive system design[C]//Proc. of the 2017 IEEE International Conference on Systems, Man, and Cybernetics, 2017: 2075−2080. |
| 34 |
ZEIGLER B P, MITTAL S, TRAORE M K. MBSE with/out simulation: state of the art and way forward[J]. Systems, 2018, 6 (4): 40.
doi: 10.3390/systems6040040 |
| 35 |
GREGORY J, BERTHOUD L, TRYFONAS T, et al. The long and winding road: MBSE adoption for functional avionics of spacecraft[J]. Journal of Systems and Software, 2020, 160, 110453.
doi: 10.1016/j.jss.2019.110453 |
| 36 |
JAN Z, AHAMED F, MAYER W, et al. Artificial intelligence for industry 4.0: systematic review of applications, challenges, and opportunities[J]. Expert Systems with Applications, 2023, 216, 119456.
doi: 10.1016/j.eswa.2022.119456 |
| 37 | FLASINSKI M, FLASINSKI M. Symbolic artificial intelligence[M]. Introduction to Artificial Intelligence. Cham: Springer, 2016: 15−22. |
| 38 |
JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349 (6245): 255- 260.
doi: 10.1126/science.aaa8415 |
| 39 |
SHI H T, SONG Z L, BAI X T, et al. Attention mechanism-based multisensor data fusion neural network for fault diagnosis of autonomous underwater vehicles[J]. Journal of Field Robotics, 2024, 41 (7): 2401- 2412.
doi: 10.1002/rob.22271 |
| 40 |
KANG Y, CAI Z, TAN C W, et al. Natural language processing (NLP) in management research: a literature review[J]. Journal of Management Analytics, 2020, 7 (2): 139- 172.
doi: 10.1080/23270012.2020.1756939 |
| 41 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 6000−6010. |
| 42 | CHANG Y P, WANG X, WANG J D, et al. A survey on evaluation of large language models[J]. ACM Transactions on Intelligent Systems and Technology, 2024, 15 (3): 1- 45. |
| 43 | BI X, CHEN D L, CHEN G T, et al. Deepseek LLM: Scaling open-source language models with longtermism[EB/OL]. [2024-12-20]. https: //arxiv.org/abs/2401.02954. |
| 44 | CHAMI M, ZOGHBI C, BRUEL J M. A first step towards AI for MBSE: generating a part of SysML models from text using AI[C]//Proc. of the INCOSE Artificial Intelligence for Systems Engineering, 2019: 123−136. |
| 45 |
MCDERMOTT T, DELAURENTIS D, BELING P, et al. AI4SE and SE4AI: a research roadmap[J]. Insight, 2020, 23 (1): 8- 14.
doi: 10.1002/inst.12278 |
| 46 | MCDERMOTT T, PEPE K, CLIFFORD M. The updated SERC AI and autonomy roadmap 2023[C]//Proc. of the INCOSE International Symposium, 2024, 34(1): 1135−1148. |
| 47 | CHAMI M, ABDOUN N, BRUEL J M. Artificial intelligence capabilities for effective model-based systems engineering: a vision paper[C]//Proc. of the INCOSE International Symposium, 2022, 32(1): 1160−1174. |
| 48 | GHANAWI I, CHAMI M W, CHAMI M, et al. Integrating AI with MBSE for data extraction from medical standards[C]//Proc. of the INCOSE International Symposium, 2024, 34(1): 1354−1366. |
| 49 |
YANG L, CORMICAN K, YU M. Ontology-based systems engineering: a state-of-the-art review[J]. Computers in Industry, 2019, 111, 148- 171.
doi: 10.1016/j.compind.2019.05.003 |
| 50 |
MA J D, WANG G X, LU J Z, et al. Systematic literature review of MBSE tool-chains[J]. Applied Sciences, 2022, 12 (7): 3431.
doi: 10.3390/app12073431 |
| 51 | LI Z H, WANG G X, LU J Z, et al. Bibliometric analysis of model-based systems engineering: past, current, and future[J]. IEEE Trans. on Engineering Management, 2022, 71, 2475- 2492. |
| 52 |
LYUTOV A, UYGUN Y, HÜTT M T. Managing workflow of customer requirements using machine learning[J]. Computers in Industry, 2019, 109, 215- 225.
doi: 10.1016/j.compind.2019.04.010 |
| 53 |
TIKAYAT R A, COLE B F, PINON F O J, et al. Agile methodology for the standardization of engineering requirements using large language models[J]. Systems, 2023, 11 (7): 352.
doi: 10.3390/systems11070352 |
| 54 |
HASSAN F, NGUYEN T, LE T, et al. Automated prioritization of construction project requirements using machine learning and fuzzy failure mode and effects analysis (FMEA)[J]. Automation in Construction, 2023, 154, 105013.
doi: 10.1016/j.autcon.2023.105013 |
| 55 |
MULLIS J, CHEN C, MORKOS B, et al. Deep neural networks in natural language processing for classifying requirements by origin and functionality: an application of BERT in system requirements[J]. Journal of Mechanical Design, 2024, 146 (4): 041401.
doi: 10.1115/1.4063764 |
| 56 | KO T, SHRESTHA R, LEE J H. Pro-active allocation of project requirements through natural language processing (NLP) and project information system integration[C]//Proc. of the Construction Research Congress, 2024: 1308−1316. |
| 57 |
HEIN P H, KAMES E, CHEN C, et al. Reasoning support for predicting requirement change volatility using complex network metrics[J]. Journal of Engineering Design, 2022, 33 (11): 811- 837.
doi: 10.1080/09544828.2022.2154051 |
| 58 |
PENG T, SHE K, SHEN Y M, et al. Enhancing traceability link recovery with fine-grained query expansion analysis[J]. Information, 2023, 14 (5): 270.
doi: 10.3390/info14050270 |
| 59 | BONNER M, ZELLER M, SCHULZ G, et al. Automated traceability between requirements and model-based design[EB/OL]. [2024-12-20]. https://ceur-ws.org/Vol-3378/PT-paper3.pdf. |
| 60 |
GARTNER A E, GOHLICH D. Towards an automatic contradiction detection in requirements engineering[J]. Proceedings of the Design Society, 2024, 4, 2049- 2058.
doi: 10.1017/pds.2024.207 |
| 61 |
YANG Z B, BAO Y, YANG Y Q, et al. Exploiting augmented intelligence in the modeling of safety-critical autonomous systems[J]. Formal Aspects of Computing, 2021, 33 (3): 343- 384.
doi: 10.1007/s00165-021-00543-6 |
| 62 |
ZHONG S, SCARINCI A, CICIRELLO A. Natural language processing for systems engineering: automatic generation of systems modelling language diagrams[J]. Knowledge-based Systems, 2023, 259, 110071.
doi: 10.1016/j.knosys.2022.110071 |
| 63 | LOPEZ J A H, CUADRADO J S. Generating structurally realistic models with deep autoregressive networks[J]. IEEE Trans. on Software Engineering, 2022, 49 (4): 2661- 2676. |
| 64 | AKUNDI A, ONTIVEROS J, LUNA S. Text-to-model transformation: natural language-based model generation framework[EB/OL]. [2024-12-20]. https://doi.org/10.3390/systems12090369. |
| 65 |
ZHANG Q, LIU J H, LI L, et al. Automatic generation of system model diagrams driven by multi-source heterogeneous data[J]. Journal of Engineering Design, 2024, 35 (11): 1442- 1486.
doi: 10.1080/09544828.2024.2360853 |
| 66 |
ZHANG J, YANG S Q. Recommendations for the model-based systems engineering modeling process based on the SysML model and domain knowledge[J]. Applied Sciences, 2024, 14 (10): 4010.
doi: 10.3390/app14104010 |
| 67 |
ROMERO V, PINQUIE R, NOEL F. A user-centric computer-aided verification process in a virtuality-reality continuum[J]. Computers in Industry, 2022, 140, 103678.
doi: 10.1016/j.compind.2022.103678 |
| 68 |
LUTFI M, VALERDI R. Integration of SysML and virtual reality environment: a ground based telescope system example[J]. Systems, 2023, 11 (4): 189.
doi: 10.3390/systems11040189 |
| 69 |
STECHERT C. Integrated approach of model-based systems engineering and augmented reality for the development of rail vehicles with alternative drives[J]. Procedia CIRP, 2023, 119, 913- 918.
doi: 10.1016/j.procir.2023.02.170 |
| 70 | BELLA E E, CREFF S, GERVAIS M P, et al. ATLaS: a framework for traceability links recovery combining information retrieval and semi-supervised techniques[C]//Proc. of the IEEE 23rd International Enterprise Distributed Object Computing Conference, 2019: 161−170. |
| 71 | GREGORY J, SALADO A. A semantic approach to spacecraft verification planning using bayesian networks[C]//Proc. of the IEEE Aerospace Conference, 2024. |
| 72 | SULTAN B, APVRILLE L. AI-driven consistency of SysML diagrams[C]//Proc. of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems, 2024: 149−159. |
| 73 | GUARINIELLO C, MOCKUS L, RAZ A K, et al. Towards intelligent architecting of aerospace system-of-systems[C]//Proc. of the IEEE Aerospace Conference, 2019. |
| 74 | KOTLYAROV V, BURYAKOVSKIY S, MASLII A, et al. Semantic networks based design of electric drives[C]//Proc. of the IEEE 2nd KhPI Week on Advanced Technology, 2021: 606−611. |
| 75 | FUCHS M, BECKERT F, RAUSCHER F, et al. Virtual reconfiguration and assessment of aircraft cabins using model-based systems engineering[C]//Proc. of the 33rd Congress of the International Council of the Aeronautical Sciences, 2022. |
| 76 | ALANDIHALLAJ M A, RAMEZANI M, HEIN A M. MBSE-enhanced LSTM framework for satellite system reliability and failure prediction[C]//Proc. of the 12th International Conference on Model-based Software and Systems Engineering, 2024: 349−356. |
| 77 | MILIND T R, THOMAS A, RASTOGI S, et al. System level modelling, evaluation, and trade-off/optimization of solid-state & hybrid DC circuit breakers for an EV eco-system using AI/ML in an MBSE framework[R]. Pune: Eaton India Innovation Center, 2024. |
| 78 | BASHIR N, BILAL M, LIAQAT M, et al. Modeling class diagram using NLP in object-oriented designing[C]//Proc. of the National Computing Colleges Conference, 2021. |
| 79 | JAHAN M, ABAD Z S H, FAR B. Generating sequence diagram from natural language requirements[C]//Proc. of the IEEE 29th International Requirements Engineering Conference Workshops, 2021: 39−48. |
| 80 | SCHOUTEN M B J, RAMACKERS G J, VERBERNE S. Preprocessing requirements documents for automatic UML modelling[C]//Proc. of the International Conference on Applications of Natural Language to Information Systems, 2022: 184−196. |
| 81 |
TIKAYAT RAY A, COLE B F, PINON FISCHER O J, et al. Aerobert-classifier: classification of aerospace requirements using bert[J]. Aerospace, 2023, 10 (3): 279.
doi: 10.3390/aerospace10030279 |
| 82 | RIESENER M, DOLLE C, BECKER A, et al. Application of natural language processing for systematic requirement management in model-based systems engineering[C]//Proc. of the INCOSE International Symposium, 2021, 31(1): 806−815. |
| 83 | ZHU R, LI W X, JIN C C. Tag: UML activity diagram deeply supervised generation from business textural specification[C]//Proc. of the IEEE International Conference on Software Analysis, Evolution and Reengineering, 2023: 956−961. |
| 84 |
BOZYIGIT F, BARDAKCI T, KHALILIPOUR A, et al. Generating domain models from natural language text using NLP: a benchmark dataset and experimental comparison of tools[J]. Software and Systems Modeling, 2024, 23, 1493- 1511.
doi: 10.1007/s10270-024-01176-y |
| 85 | 刘蒙, 耿施展, 丁国辉. 基于自定义规则的SysML用例自动生成方法研究[J]. 图学学报, 2024, 45 (2): 374- 382. |
| LIU M, GENG S Z, DING G H. Research on rule-based method for automatic generation of SysML use cases[J]. Journal of Graphics, 2024, 45 (2): 374- 382. | |
| 86 | FUCHS J, HELMERICH C, HOLLAND S. Transforming system modeling with declarative methods and generative AI[C]//Proc. of the AIAA Scitech 2024 Forum, 2024. |
| 87 | APVRILLE L, SULTAN B. System architects are not alone anymore: automatic system modeling with AI[C]//Proc. of the 12th International Conference on Model-Based Software and Systems Engineering, 2024: 27−38. |
| 88 | ABUKHALAF S, HAMDAQA M, KHOMH F. On Codex prompt engineering for OCL generation: an empirical study[C]//Proc. of the IEEE/ACM 20th International Conference on Mining Software Repositories, 2023: 148−157. |
| 89 | AWADID A, ROBERT B, LANGLOIS B. MBSE to support engineering of trustworthy AI-based critical systems[C]//Proc. of the 12th International Conference on Model-based Software and Systems Engineering, 2024. |
| 90 | VANGUNDY B, PHOJANAMONGKOLKIJ N, BROWN B, et al. Requirement discovery using embedded knowledge graph with ChatGPT[C]//Proc. of the INCOSE International Symposium, 2024, 34(1): 2011−2027. |
| 91 | 于晗, 陈治源, 熊熙瑞, 等. 基于检索增强大语言模型的MBSE智能设计方法[J]. 图学学报, 2024, 45 (6): 1188- 1199. |
| YU H, CHEN Z Y, XIONG X R, et al. Intelligent MBSE design approach based on retrieval augmented large language model[J]. Journal of Graphics, 2024, 45 (6): 1188- 1199. | |
| 92 | WU G D, LI H, LIAO X Q, et al. An automatic and rapid knowledge graph construction method of SG-CIM model[C]//Proc. of the IEEE International Conference on Smart Cloud, 2020: 193−198. |
| 93 | 景博, 黄崧琳, 王生龙, 等. 军用飞机PHM系统一体化设计架构分析[J]. 航空工程进展, 2022, 13 (3): 64- 73. |
| JING B, HUANG S L, WANG S L, et al. Analysis on integrated design of military aircraft prognostic and health management (PHM) system[J]. Advances in Aeronautical Science and Engineering, 2022, 13 (3): 64- 73. | |
| 94 | LU J Z, MA J D, ZHENG X C, et al. Design ontology supporting model-based systems engineering formalisms[J]. IEEE Systems Journal, 2021, 16 (4): 5465- 5476. |
| 95 | ZINDEL A, FEO-ARENIS S, HELLE P, et al. Building a semantic layer for early design trade studies in the development of commercial aircraft[C]//Proc. of the IEEE International Symposium on Systems Engineering, 2022. |
| 96 |
WEI X Y, WANG Z D, YANG S Y. An automatic generation and verification method of software requirements specification[J]. Electronics, 2023, 12 (12): 2734.
doi: 10.3390/electronics12122734 |
| 97 |
FU C, LIU J H, WANG S D. Building SysML model graph to support the system model reuse[J]. IEEE Access, 2021, 9, 132374- 132389.
doi: 10.1109/ACCESS.2021.3115165 |
| 98 | SMAJEVIC M, BORK D. From conceptual models to knowledge graphs: a generic model transformation platform[C]//Proc. of the ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion, 2021: 610−614. |
| [1] | 陈凯柏, 高博, 高敏, 余道杰, 周晓东, 宋燕燕, 王越. 电子系统高功率微波效应研究进展[J]. 系统工程与电子技术, 2025, 47(8): 2429-2443. |
| [2] | 王纪凯, 豆亚杰, 李婧, 董奕君, 姜江, 谭跃进. 智能决策在军事体系工程的研究综述[J]. 系统工程与电子技术, 2025, 47(8): 2581-2599. |
| [3] | 孟庆春, 杜非, 王彪, 张芹, 韩汶, 徐畅. 基于MBSE的危化品车辆监控预警系统设计[J]. 系统工程与电子技术, 2025, 47(7): 2224-2236. |
| [4] | 李特, 郭强, 战鹏. 基于MBSE的异构探测器系统架构设计方法[J]. 系统工程与电子技术, 2025, 47(6): 1930-1940. |
| [5] | 崔馨方, 陈祥文. MBSE在载人航天在轨物资补给任务中的应用[J]. 系统工程与电子技术, 2025, 47(5): 1551-1560. |
| [6] | 鲁金直, 王国新, 唐锡晋, 唐俊杰, 温跃杰, 唐剑, 张旸旸, 兰小平, 刘奇, 李俊霖, 马君达, 吴绶玄, 胡晓度. 面向空间智能的基于模型的系统工程方法[J]. 系统工程与电子技术, 2025, 47(12): 3877-3889. |
| [7] | 龚逸辉, 王国新, 阎艳, 吴绶玄, 董梦如, 袁永吉. 基于模型的系统工程中的架构模型质量综述:概念、框架和技术[J]. 系统工程与电子技术, 2025, 47(12): 3890-3900. |
| [8] | 白一帆, 张鹏, 霍晓春, 代巍, 杨文举. MBSE与PLM融合的系统总体协同设计实践应用研究[J]. 系统工程与电子技术, 2025, 47(12): 3924-3934. |
| [9] | 陈成, 张祥瑞, 杨中源, 周华伟, 何秦, 韩灿. 基于DoDAF的舰船实战化需求建模与分析方法[J]. 系统工程与电子技术, 2025, 47(10): 3389-3400. |
| [10] | 王乾, 郑党党, 佟瑞庭, 韩冰, 杨小辉. 基于MBSE的民机飞行控制系统架构设计[J]. 系统工程与电子技术, 2024, 46(9): 3050-3059. |
| [11] | 陈志兵, 邬恒, 罗战虎, 王建国. 基于MBSE的对流层飞艇运行概念研究[J]. 系统工程与电子技术, 2024, 46(3): 1004-1012. |
| [12] | 董梦如, 王国新, 鲁金直, 马君达, 阎艳. 基于WordCloud技术的MBSE发展态势研究[J]. 系统工程与电子技术, 2024, 46(2): 534-548. |
| [13] | 苗学问, 董骁雄, 钱征文, 胡杨, 李牧东. 基于DoDAF的航空装备智能保障系统体系结构建模[J]. 系统工程与电子技术, 2024, 46(2): 640-648. |
| [14] | 戚亚群, 金平, 彭祺擘, 张海联, 蔡国飙. 基于模型的推进系统故障识别及建模方法[J]. 系统工程与电子技术, 2024, 46(12): 4062-4073. |
| [15] | 朱景璐, 朱野, 李立, 郑轲. 基于MBSE的卫星能源系统设计与验证[J]. 系统工程与电子技术, 2024, 46(11): 3807-3819. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||