系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (10): 3218-3227.doi: 10.12305/j.issn.1001-506X.2025.10.09

• 传感器与信号处理 • 上一篇    

非均匀杂波环境下的低空多目标跟踪算法

尚李娜(), 董玫(), 陈伯孝()   

  1. 西安电子科技大学雷达信号处理全国重点实验室,陕西 西安 710071
  • 收稿日期:2024-08-09 出版日期:2025-10-25 发布日期:2025-10-23
  • 通讯作者: 董玫 E-mail:2609361287@qq.com;dmei2006@xidian.edu.cn;bxchen@xidian.edu.cn
  • 作者简介:尚李娜(1998—),女,硕士研究生,主要研究方向为雷达信号处理
    陈伯孝(1966—),男,教授,博士,主要研究方向为雷达信号处理
  • 基金资助:
    国家自然科学基金(62271367)资助课题

Low-altitude multi-target tracking algorithm in non-uniform clutter environment

Lina SHANG(), Mei DONG(), Baixiao CHEN()   

  1. National Key Laboratory of Radar Signal Processing,Xidian University,Xi’an 710071,China
  • Received:2024-08-09 Online:2025-10-25 Published:2025-10-23
  • Contact: Mei DONG E-mail:2609361287@qq.com;dmei2006@xidian.edu.cn;bxchen@xidian.edu.cn

摘要:

针对低空环境中自然及人为因素干扰导致背景杂波呈现非均匀分布,使多目标跟踪算法中出现较多虚假目标问题,提出一种基于聚类的标签无迹卡尔曼概率假设密度低空多目标跟踪算法。首先,通过密度聚类将量测数据划分为密集区域和稀疏区域,分别去除各区域中的杂波量测,使各区域量测数据均匀化,从而抑制了非均匀杂波的干扰。然后,引用标签进行目标区分和航迹维持,使目标轨迹具有连续性。仿真结果表明,该算法有效抑制了虚假目标的产生,实现了非均匀杂波环境下准确、连续且高效的多目标跟踪。

关键词: 多目标跟踪, 随机有限集, 密度聚类, 杂波抑制, 有限混合模型

Abstract:

Aimming at the problem that in low-altitude environments, natural and human-made interferences can cause the background clutter to exhibit non-uniform distributions, resulting in an increase of false targets in multi-target tracking algorithms, a label unscented Kalman probability hypothesis density based on clustering (C-Label-UK-PHD) algorithm is proposed for low-altitude multi-target tracking. The algorithm first applies density clustering to partition the measurement data into dense and sparse regions, removing clutter measurements from each region to homogenize the measurement data, thereby suppressing the interference from non-uniform clutter. Then labels are used to distinguish between different targets and maintain the continuity of target trajectories. The simulation results show that this algorithm effectively suppresses the generation of false targets and achieves accurate, continuous and efficient multi-target tracking in non-uniform clutter environment.

Key words: multi-target tracking, random finite set, density clustering, clutter suppression, finite mixture model

中图分类号: