1 |
XIE W C, WANG Y L, ZHANG B H, et al. Clutter suppression for bistatic airborne radar with range ambiguity[C]//Proc. of the IEEE CIE International Conference on Radar, 2011: 1893-1897.
|
2 |
LIU J H, LIAO G S. Spaceborne-airborne bistatic radar clutter modeling and analysis[C]//Proc. of the IEEE CIE International Conference on Radar, 2011: 915-918.
|
3 |
KLINTBERG J, MCKELVE T, DAMMERT P. Mitigation of ground clutter in airborne bistatic radar systems[C]//Proc. of the IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, 2020.
|
4 |
BRENNAM L E , MALLETT J D , REED I S . Theory of adaptive radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 1973, 9 (2): 237- 251.
|
5 |
LIU M X , WNAG X G , ZOU L . Robust STAP with reduced mutual coupling and enhanced DOF based on super nested sampling structure[J]. IEEE Access, 2019, 7, 175420- 175428.
doi: 10.1109/ACCESS.2019.2957598
|
6 |
SUN G H , HE Z S , TONG J , et al. Mutual information-based waveform design for MIMO radar space-time adaptive processing[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (4): 2909- 2921.
doi: 10.1109/TGRS.2020.3008320
|
7 |
PANG X J , ZHAO Y B , CAO C H , et al. STAP method based on atomic norm minimization with array amplitude-phase error calibration[J]. Systems Engineering and Electronics, 2021, 32 (1): 21- 30.
doi: 10.23919/JSEE.2021.000003
|
8 |
LIU C , WNAG T , ZHANG S G , et al. A clutter suppression algorithm via weighted $\ell$2-norm penalty for airborne radar[J]. IEEE Signal Processing Letters, 2022, 29, 1522- 1525.
doi: 10.1109/LSP.2022.3187347
|
9 |
KLINTBERG J, MCKELVEY T, DAMMERT P. A parametric generalized likelihood ratio test for airborne bistatic radar systems[C]//Proc. of the IEEE Radar Conference, 2022.
|
10 |
SUN G H , LI M , TONG J , et al. Structured clutter covariance matrix estimation for airborne MIMO radar with limited trai-ning data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 3500905.
|
11 |
HUANG P H , XIA X G , ZOU Z H , et al. A novel sea clutter rejection algorithm for spaceborne multichannel radar systems[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5117422.
|
12 |
FU D G , WEN J , XU J W , et al. STAP-based airborne radar system for maneuvering target detection[J]. IEEE Access, 2019, 7, 62071- 62079.
doi: 10.1109/ACCESS.2019.2914224
|
13 |
WANG Q, ZHANG Y S, WU G E, et al. Clutter reduced-dimension sparse recovery method on knowledge-aided for airborne phased array radar[C]//Proc. of the 4th International Conference on Mechanical, Control and Computer Engineering, 2019: 207-2074.
|
14 |
周沛. 对STAP的干扰技术研究[D]. 西安: 西安电子科技大学, 2021.
|
|
ZHOU P. Research on jamming technology against STAP[D]. Xi'an: Xidian University, 2021.
|
15 |
SHI J X , XIE L , CHENG Z Y , et al. Angle-Doppler channel selection method for reduced-dimension STAP based on sequential convex programming[J]. IEEE Communications Letters, 2021, 25 (9): 3080- 3084.
doi: 10.1109/LCOMM.2021.3084973
|
16 |
楼万翔, 黄迪. 一种波束域主模式抑制算法[J]. 声学技术, 2020, 39 (3): 385- 388.
|
|
LOU W X , HUANG D . A beam-space dominant mode rejection algorithm[J]. Technical Acoustics, 2020, 39 (3): 385- 388.
|
17 |
BORSARI G K. Mitigating effects on STAP processing caused by an inclined array[C]//Proc. of the IEEE National Radar Conference, 1998: 135-140.
|
18 |
HIMED B, ZHANG Y H, HAJJARI A. STAP with angle-Doppler compensation for bistatic airborne radars[C]//Proc. of the IEEE Radar Conference, 2002: 311-317.
|
19 |
LAPIERRE F D, VERLY J G. Computationally-efficient range-dependence compensation method for bistatic radar STAP[C]//Proc. of the IEEE International Radar Conference, 2005: 714-719.
|
20 |
RIES P , LAPIERRE F D , VERLY J G . Geometry-induced range-dependence compensation for bistatic STAP with conformal arrays[J]. IEEE Trans.on Aerospace and Electronic Systems, 2011, 47 (1): 275- 294.
doi: 10.1109/TAES.2011.5705675
|
21 |
MCKINLEY B L, BELL K L. Range-dependence compensation for bistatic STAP using focusing matrices[C]//Proc. of the IEEE Radar Conference, 2015: 1750-1755.
|
22 |
WEI M, FAN Q M, LI X B, et al. A compensation method using focusing matrix based on maximum likelihood estimation[C]//Proc. of the CIE International Conference on Radar, 2016.
|
23 |
FALLAH A, BAKHSHI H. Extension of adaptive angle-Doppler compensation (AADC) in STAP to increase homogeneity of data in airborne bistatic radar[C]//Proc. of the 6th International Symposium on Telecommunications, 2012: 367-372.
|
24 |
JIA F D, HE Z S, LI J, et al. Adaptive angle-Doppler compensation in airborne phased radar for planar array[C]//Proc. of the IEEE 13th International Conference on Signal Processing, 2016: 1585-1588.
|
25 |
KLINTBERG J , MCKELVEY T , DAMMERT P . A parame-tric approach to space-time adaptive processing in bistatic radar systems[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 58 (2): 1149- 1160.
doi: 10.1109/TAES.2021.3122520
|
26 |
BAO Z, WU S J, LIAOG S, et al. Review of reduced rank space-time adaptive processing for airborne radar[C]//Proc. of the International Radar Conference, 1996: 766-769.
|
27 |
WANG H , CAI L J . On adaptive spatial-temporal processing for airborne surveillance radar systems[J]. IEEE Trans.on Aerospace and Electronic Systems, 1994, 30 (3): 660- 670.
doi: 10.1109/7.303737
|
28 |
KLEMM R . Adaptive airborne MTI: an auxiliary channel approach[J]. IEEE Proceeding of Communications, Radar and Signal Processing, 1987, 134 (3): 269- 276.
doi: 10.1049/ip-f-1.1987.0054
|
29 |
WANG Y L , CHEN J W , BAO Z , et al. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments[J]. IEEE Trans.on Aerospace and Electronic Systems, 2003, 39 (1): 70- 81.
doi: 10.1109/TAES.2003.1188894
|
30 |
张莹莹. 机载雷达空时自适应处理降维方法研究[D]. 西安: 西安电子科技大学, 2017.
|
|
ZHANG Y Y. Study on dimension-reduced space-time adaptive processing approaches for airborne radar[D]. Xi'an: Xidian University, 2017.
|
31 |
陈怀庆, 张小贝, 方习高, 等. 改进的机载相控阵雷达JDL-STAP算法[J]. 电子测量技术, 2021, 44 (2): 142- 147.
|
|
CHEN H Q , ZHANG X B , FANG X G , et al. Improved JDL-STAP algeorithm for airborne phased array radar[J]. Electronic Measurement Technology, 2021, 44 (2): 142- 147.
|
32 |
庞晓娇, 赵永波, 曹成虎, 等. 基于协方差拟合准则的降维空时自适应处理方法[J]. 系统工程与电子技术, 2022, 44 (1): 86- 93.
|
|
PANG X J , ZHAO Y B , CAO C H , et al. Reduced-dimension space-time adaptive processing method based on the covariance fitting criterion[J]. Systems Engineering and Electronics, 2022, 44 (1): 86- 93.
|
33 |
HUANG P H , ZOU Z H , XIA X G , et al. A novel dimension-reduced space-time adaptive processing algorithm for spaceborne multichannel surveillance radar systems based on spatial-temporal 2-D sliding window[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5109721.
|
34 |
李常先. 分布式无人机杂波建模与目标检测定位方法研究[D]. 西安: 西安电子科技大学, 2019.
|
|
LI C X. Research on clutter modeling and target detection and location method of distributed UAV radar[D]. Xi'an: Xidian University, 2019.
|
35 |
HAN X D, ZHANG G L, SHU T, et al. A two-stage hybrid clutter range dependence compensation method for airborne radar with non-sidelooking array[C]//Proc. of the IEEE Radar Conference, 2015: 100-104.
|
36 |
赵阳. 复杂背景下弹载雷达动目标检测[D]. 西安: 西安电子科技大学, 2021.
|
|
ZHAO Y. Moving target detection for missile-borne radar under complex environment[D]. Xi'an: Xidian University, 2021.
|
37 |
GAO Z Q, TAO H H. Knowledge-aided direct data domain STAP algorithm for forward-looking airborne radar[C]//Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019.
|
38 |
SLESICKA A, KAWALEC A. The performance of a linear STAP processor for radar signal processing[C]//Proc. of the 21st International Radar Symposium, 2020: 154-156.
|
39 |
HU Y L , ZHAO Y B , PANG X J , et al. Short-range clutter suppression method combining oblique projection and interpolation in airborne CFA radar[J]. Journal of Systems Engineering and Electronics, 2021, 32 (1): 92- 102.
doi: 10.23919/JSEE.2021.000010
|