1 |
BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 2544-2550.
|
2 |
HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]// Proc. of the European Conference on Computer Vision, 2012: 702-715.
|
3 |
HENRIQUES J F , CASEIRO R , MARTINS P , et al. High-speed tracking with kernelized correlation filters[J]. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2015, 37 (3):583-596.
|
4 |
KIANI G H, FAGG A, LUCEY S. Learning background-aware correlation filters for visual tracking[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 1135-1143.
|
5 |
LI Y, ZHU J K. A scale adaptive kernel correlation filter tracker with feature intergration[C]//Proc. of the European Conference on Computer Vision, 2014: 254-265.
|
6 |
YUN S D, CHOI J W, YOO Y J, et al. Action-decision networks for visual tracking with deep reinforcement learning[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2711-2720.
|
7 |
刘志强, 任世恒. 复杂场景下基于OSA改进的多目标跟踪算法研究[J]. 信息技术, 2022, (4): 123- 129.
|
|
LIU Z Q , REN S H . Research on multi-target tracking algorithm based on improved OSA in complex scenes[J]. Information Technology, 2022, (4): 123- 129.
|
8 |
王彬彬. 基于SVM与Meanshift跟踪算法的运动视频目标跟踪[J]. 现代电子技术, 2022, 45 (1): 56- 60.
|
|
WANG B B . Moving video object tracking based on SVM and meanshift tracking algorithm[J]. Modern Electronics Technique, 2022, 45 (1): 56- 60.
|
9 |
张文利, 辛宜桃, 杨堃, 等. 基于改进的Transformer加Anchor-free网络的多目标跟踪算法[J]. 测控技术, 2022, 41 (2): 20- 28.
|
|
ZHANG W L , XIN Y T , YANG K , et al. Improved Transformer plus Anchor-free network based on multi-object tracking algorithm[J]. Measurement & Control Technology, 2022, 41 (2): 20- 28.
|
10 |
BEWLEY A, GE Z, OTT L, et al. Simple online and realtime tracking[C]//Proc. of the IEEE International Conference on Image Processing, 2016: 3464-3468.
|
11 |
WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proc. of the IEEE International Conference on Image Processing, 2017: 3645-3649.
|
12 |
ZHANG Y F, SUN P Z, JIANG Y, et al. ByteTrack: multi-object tracking by associating every detection box[EB/OL]. [2023-01-07]. https://arXivpreprintarXiv:2110.06864, 2021.
|
13 |
WANG Z D, ZHENG L, LIU Y X, et al. Towards real-time multi-object tracking[C]//Proc. of the European Conference on Computer Vision, 2020: 107-122.
|
14 |
ZHANG Y F, WANG C Y, WANG X G, et al. A simple baseline for multi-object tracking[EB/OL]. [2023-01-07]. https://arXivpreprintarXiv:2004.01888.
|
15 |
PENG J L, WANG C G, WAN F B, et al. Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking[C]//Proc. of the European Conference on Computer Vision, 2020: 145-161.
|
16 |
ZHOU X Y, KOLTUN V, KRÄHENBVHL P. Tracking objects as points[C]//Proc. of the European Conference on Computer Vision, 2020: 474-490.
|
17 |
SUN P Z, JIANG Y, ZHANG R F, et al. Transtrack: multiple object tracking with transformer[EB/OL]. [2023-01-07]. https://arXivpreprintarXiv:2012.15460, 2020.
|
18 |
MEINHARDT T, KIRILLOV A, LEAL-TAIXE L, et al. Trackformer: multi-object tracking with transformers[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 8844-8854.
|
19 |
ZENG F G, DONG B, ZHANG Y, et al. Motr: end-to-end multiple-object tracking with transformer[EB/OL]. [2023-01-07]. https://arXivpreprintarXiv:2105.03247, 2021.
|
20 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proc. of the Advances in Neural Information Processing Systems, 2017.
|
21 |
SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proc. of the 28th International Conference on Neural Information Processing Systems, 2015: 802-810.
|
22 |
KALMAN R E . A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82 (D): 35- 45.
|
23 |
ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL]. [2023-01-07]. https://arXivpreprintarXiv:1409.2329, 2014.
|
24 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
25 |
BALDUZZI D, FREAN M, LEARY L, et al. The shattered gradients problem: if resnets are the answer, then what is the question?[C]//Proc. of the International Conference on Machine Learning, 2017: 342-350.
|
26 |
LECUN Y , BOTTOU L , BENGIO Y , et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324.
|
27 |
ZHANG F , WANG X Y , ZHOU S L , et al. Arbitrary-oriented ship detection through center-head point extraction[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 60 (1): 5612414.
|
28 |
BERNARDIN K , STIEFELHAGEN R . Evaluating multiple object tracking performance: the clear mot metrics[J]. EURASIP Journal on Image and Video Processing, 2008, 246309.
|
29 |
RISTANI E, SOLERA F, ZOU R S, et al. Performance mea-sures and a data set for multi-target, multi-camera tracking[C]// Proc. of the European Conference on Computer Vision, 2016: 17-35.
|
30 |
LI Y, HUANG C, NEVATIA R. Learning to associate: hybridboosted multi-target tracker for crowded scene[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2009: 2953-2960.
|