

系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (7): 2237-2255.doi: 10.12305/j.issn.1001-506X.2024.07.08
• 传感器与信号处理 • 上一篇
王进1, 冷祥光1,*, 孙忠镇1, 马晓杰1, 杨阳2, 计科峰1
收稿日期:2022-09-26
									
				
									
				
									
				
											出版日期:2024-06-28
									
				
											发布日期:2024-07-02
									
			通讯作者:
					冷祥光
												作者简介:王进(1999—), 男, 硕士研究生, 主要研究方向为智能电子对抗与评估、SAR图像目标智能解译基金资助:Jin WANG1, Xiangguang LENG1,*, Zhongzhen SUN1, Xiaojie MA1, Yang YANG2, Kefeng JI1
Received:2022-09-26
									
				
									
				
									
				
											Online:2024-06-28
									
				
											Published:2024-07-02
									
			Contact:
					Xiangguang LENG   
												摘要:
合成孔径雷达(sythetic aperture radar, SAR)能够对海上舰船目标进行全天时、全天候成像, 但是运动舰船在高分辨率SAR图像上的方位向散焦会严重影响后续对舰船目标的识别。由于舰船运动的非合作性, 目前对复杂运动舰船在SAR图像中的散焦特性认识不足。本文首先从SAR成像原理出发, 理论推导得出舰船复杂运动引起的SAR回波信号相位误差的空变性和时变性是导致其SAR图像质量下降的决定性因素。在此基础上, 构建了一个复杂运动舰船目标SAR成像模拟器, 通过对不同运动状态、不同合成孔径时间舰船点、线、面目标的SAR成像仿真, 揭示了复杂运动舰船目标SAR成像空/时变散焦特性。其中, 空变性会造成舰船在SAR图像上非均匀散焦; 时变性使得舰船在SAR图像上变为一条方位向能量带。最后, 结合空/时变散焦特性, 探讨了未来SAR运动舰船重聚焦技术的发展方向。
中图分类号:
王进, 冷祥光, 孙忠镇, 马晓杰, 杨阳, 计科峰. 复杂运动舰船目标SAR成像空/时变散焦特性研究[J]. 系统工程与电子技术, 2024, 46(7): 2237-2255.
Jin WANG, Xiangguang LENG, Zhongzhen SUN, Xiaojie MA, Yang YANG, Kefeng JI. Study of space/time varying defocus characteristics of complex moving ship targets in SAR imaging[J]. Systems Engineering and Electronics, 2024, 46(7): 2237-2255.
| 1 | 邢相薇, 计科峰, 康利鸿, 等. HRWS SAR图像舰船目标监视技术研究综述[J]. 雷达学报, 2015, 4 (1): 107- 121. | 
| XING X W , JI K F , KANG L H , et al. Review of ship surveillance technologies based on high-resolution wide-swath synthetic aperture radar imaging[J]. Journal of Radars, 2015, 4 (1): 107- 121. | |
| 2 | LENG X G ,  JI K F ,  YANG K , et al.  A bilateral CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (7): 1536- 1540. doi: 10.1109/LGRS.2015.2412174 | 
| 3 | LIN Z ,  JI K F ,  KANG M , et al.  Deep convolutional highway unit network for SAR target classification with limited labeled training data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (7): 1091- 1095. doi: 10.1109/LGRS.2017.2698213 | 
| 4 | KANG M, LENG X G, LIN Z, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]//Proc. of the International Workshop on Remote Sensing with Intelligent Processing, 2017. | 
| 5 | LIN Z , JI K F , LENG X G , et al. Squeeze and excitation rank faster R-CNN for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16 (5): 751- 755. | 
| 6 | SUN Z Z ,  DAI M C ,  LENG X G , et al.  An anchor-free detection method for ship targets in high-resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7799- 7816. doi: 10.1109/JSTARS.2021.3099483 | 
| 7 | LENG X G , JI K F , XIONG B L , et al. Complex signal kurtosis—indicator of ship target signature in SAR images[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 60, 5208312. | 
| 8 | 邢相薇, 赵俊保, 朱莉珏, 等. SAR图像运动船只目标检测技术探讨[C]//第五届高分辨率对地观测学术年会, 2018. | 
| XING X W, ZHAO J B, ZHU L Y, et al. Reviews on technologies of moving marine target detection on SAR imagery[C]//Proc. of the fifth Annual Conference on High Resolution Earth Observation, 2018. | |
| 9 | 安道祥. 高分辨率SAR成像处理技术研究[D]. 长沙: 国防科学技术大学, 2011. | 
| AN D X. Study on the imaging techniques for high resolution SAR systems[D]. Changsha: National University of Defense Technology, 2011. | |
| 10 | ZHU Y F ,  HE F ,  DONG Z .  Moving ships refocusing for spaceborne SAR based on Doppler parameters estimation[J]. The Journal of Engineering, 2019, 2019 (19): 5905- 5908. doi: 10.1049/joe.2019.0447 | 
| 11 | 云亚娇, 齐向阳, 李宁. 基于参数估计的海面运动舰船SAR成像方法[J]. 雷达学报, 2016, 5 (3): 326- 332. | 
| YUN Y J , QI X Y , LI N . Moving ship SAR imaging based on parameter estimation[J]. Journal of Radars, 2016, 5 (3): 326- 332. | |
| 12 | YANG C A , QI X Y , NING L . A method for moving ship SAR imaging based on parameter estimation[J]. Foreign Electronic Measurement Technology, 2017, 36 (5): 30- 36. | 
| 13 | HUANG L M , DUAN W Y , HAN Y , et al. A review of short-term prediction techniques for ship motions in seaway[J]. Journal of Ship Mechanics, 2014, 18 (12): 1534- 1542. | 
| 14 | DOERRY A W. Ship dynamics for maritime ISAR imaging[R]. Albuquerque: Sandia National Laboratory, 2008. | 
| 15 | 陈小龙, 董云龙, 李秀友, 等. 海面刚体目标微动特征建模及特性分析[J]. 雷达学报, 2015, 4 (6): 630- 638. | 
| CHEN X L , DONG Y L , LI X Y , et al. Modeling of micromotion and analysis of properties of rigid marine targets[J]. Journal of Radars, 2015, 4 (6): 630- 638. | |
| 16 | 邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9 (1): 1- 33. | 
| DENG Y K , YU W D , ZHANG H , et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9 (1): 1- 33. | |
| 17 | LIU W , SUN G C , XIA X G , et al. Focusing challenges of ships with oscillatory motions and long coherent processing interval[J]. IEEE Trans. on Geoscience and Remote Sensing, 2020, 59 (8): 6562- 6572. | 
| 18 | 邹斌, 张腊梅, 寇立志, 等. SAR图像动目标特性分析及仿真[J]. 雷达科学与技术, 2008, 6 (2): 116- 122. | 
| ZOU B , ZHANG L M , KOU L Z , et al. Characteristic analysis and simulation of SAR moving targets[J]. Radar Science and Technology, 2008, 6 (2): 116- 122. | |
| 19 | LI X ,  DENG B ,  QIN Y L , et al.  The influence of target micromotion on SAR and GMTI[J]. IEEE Trans. on Geoscience and Remote Sensing, 2011, 49 (7): 2738- 2751. doi: 10.1109/TGRS.2011.2104965 | 
| 20 | LIU P ,  JIN Y Q .  A study of ship rotation effects on SAR image[J]. IEEE Trans. on Geoscience and Remote Sensing, 2017, 55 (6): 3132- 3144. doi: 10.1109/TGRS.2017.2662038 | 
| 21 | ZHOU B ,  QI X Y ,  ZHANG J H , et al.  Effect of 6-DOF oscillation of ship target on SAR imaging[J]. Remote Sensing, 2021, 13 (9): 1821. doi: 10.3390/rs13091821 | 
| 22 | 邢孟道, 高悦欣, 陈溅来, 等. 海上舰船目标雷达成像算法[J]. 科技导报, 2017, 35 (20): 53- 60. | 
| XING M D , GAO Y X , CHEN J L , et al. A survey of the radar imaging algorithms for ship targets on the sea[J]. Science, 2017, 35 (20): 53- 60. | |
| 23 | 刘喜藏, 林皓, 张玲. 航母在不同海况下的运动仿真研究[C]//中国航空工业技术装备工程协会年会, 2020: 324-327. | 
| LIU X Z, LIN H, ZHANG L. Motion simulation of aircraft carrier under different sea conditions[C]//Proc. of the Annual Conference of China Aviation Industry Technical Equipment Engineering Association, 2020: 324-327. | |
| 24 | WEHNER D R . High resolution radar[M]. Norwood, MA: Artech House, 1987. | 
| 25 | CALLOWAY T M ,  DONOHOE G W .  Subaperture autofocus for synthetic aperture radar[J]. IEEE Trans. on Aerospace and Electronic Systems, 1994, 30 (2): 617- 621. doi: 10.1109/7.272285 | 
| 26 | WAHL D E ,  EICHEL P H ,  GHIGLIA D C , et al.  Phase gradient autofocus—a robust tool for high resolution SAR phase correction[J]. IEEE Trans. on Aerospace and Electronic Systems, 1994, 30 (3): 827- 835. doi: 10.1109/7.303752 | 
| 27 | HUANG X L ,  JI K F ,  LENG X G , et al.  Refocusing moving ship targets in SAR images based on fast minimum entropy phase compensation[J]. Sensors, 2019, 19 (5): 1154. doi: 10.3390/s19051154 | 
| 28 | BERIZZI F ,  MARTORELLA M ,  CACCIAMANO A , et al.  A contrast-based algorithm for synthetic range-profile motion compensation[J]. IEEE Trans. on Geoscience and Remote Sensing, 2008, 46 (10): 3053- 3062. doi: 10.1109/TGRS.2008.2002576 | 
| 29 | SOMMER A ,  OSTERMANN J .  Backprojection subimage autofocus of moving ships for synthetic aperture radar[J]. IEEE Trans. on Goscience and Remote Sensing, 2019, 57 (11): 8383- 8393. doi: 10.1109/TGRS.2019.2920779 | 
| 30 | LI G F, ZHANG G, QIN H L, et al. A non-linearly moving ship autofocus method under hybrid coordinate system[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2020: 2471-2474. | 
| 31 | 李志远, 郭嘉逸, 张月婷, 等. 基于自适应动量估计优化器与空变最小熵准则的SAR图像船舶目标自聚焦算法[J]. 雷达学报, 2022, 11 (1): 83- 94. | 
| LI Z Y , GUO J Y , ZHANG Y T , et al. A novel autofocus algorithm for ship targets in SAR images based on the adaptive momentum estimation optimizer and space-variant minimum entropy criteria[J]. Journal of Radars, 2022, 11 (1): 83- 94. | |
| 32 | PELICH R , LONGÉPÉ N , MERCIER G , et al. Vessel refocusing and velocity estimation on SAR imagery using the fractional Fourier transform[J]. IEEE Trans. on Geoscience and Remote Sensing, 2015, 54 (3): 1670- 1684. | 
| 33 | 孙玉鑫, 丁娟娟, 刘鹏. 基于分数阶傅里叶变换的运动舰船聚焦算法[J]. 电讯技术, 2017, 57 (5): 510- 517. | 
| SUN Y X , DING J J , LIU P . Moving ship refocusing using fractional Fourier transform algorithm[J]. Telecommunication Engineering, 2017, 57 (5): 510- 517. | |
| 34 | JIA X ,  SONG H J ,  HE W .  A novel method for refocusing moving ships in SAR images via ISAR technique[J]. Remote Sensing, 2021, 13 (14): 2738. doi: 10.3390/rs13142738 | 
| 35 | CAO R ,  WANG Y ,  ZHAO B , et al.  Ship target imaging in airborne SAR system based on automatic image segmentation and ISAR technique[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 1985- 2000. doi: 10.1109/JSTARS.2021.3050108 | 
| 36 | LU Z J ,  QIN Q ,  SHI H Y , et al.  SAR moving target imaging based on convolutional neural network[J]. Digital Signal Processing, 2020, 106, 102832. doi: 10.1016/j.dsp.2020.102832 | 
| 37 | LIU Z ,  YANG S Y ,  FENG Z X , et al.  Fast SAR autofocus based on ensemble convolutional extreme learning machine[J]. Remote Sensing, 2021, 13 (14): 2683. doi: 10.3390/rs13142683 | 
| 38 | HUA Q L , ZHANG Y , LI H B , et al. Refocusing on SAR ship targets with three-dimensional rotating based on complex-valued convolutional gated recurrent unit[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4512405. | 
| [1] | 邢世其, 纪朋徽, 代大海, 冯德军. 方位向调制干扰对高分宽幅多通道SAR的影响[J]. 系统工程与电子技术, 2024, 46(6): 1946-1956. | 
| [2] | 曾顶, 殷君君, 杨健. 基于融合距离的极化SAR图像非局部均值滤波[J]. 系统工程与电子技术, 2024, 46(5): 1493-1502. | 
| [3] | 邵子康, 张晓玲, 张天文, 曾天娇. 基于锚框自适应和多尺度增强的SAR舰船检测[J]. 系统工程与电子技术, 2024, 46(4): 1204-1211. | 
| [4] | 张天文, 张晓玲, 邵子康, 曾天娇. 基于掩模注意型交互的SAR舰船实例分割[J]. 系统工程与电子技术, 2024, 46(3): 831-838. | 
| [5] | 方小宇, 黄丽佳. 基于全局位置信息和残差特征融合的SAR船舶检测算法[J]. 系统工程与电子技术, 2024, 46(3): 839-848. | 
| [6] | 张亚丽, 冯伟, 全英汇, 邢孟道. 基于多源遥感图像多级协同融合的舰船识别算法[J]. 系统工程与电子技术, 2024, 46(2): 407-418. | 
| [7] | 刘燊文, 崔兴超, 陈思伟. 结合空时上下文信息的视频SAR图像相干斑滤波[J]. 系统工程与电子技术, 2024, 46(2): 446-458. | 
| [8] | 陈洋, 肖国尧, 全英汇, 任爱锋, 别博文, 邢孟道. 基于多核DSP的星载双基FMCW SAR成像算法实现[J]. 系统工程与电子技术, 2024, 46(1): 121-129. | 
| [9] | 刘鸣谦, 徐仲秋, 陈天成, 张冰尘, 吴一戎. 基于L1 & TV正则化的低过采样Staggered SAR成像方法[J]. 系统工程与电子技术, 2023, 45(9): 2718-2726. | 
| [10] | 王中宝, 尹奎英. 基于联合域滤波的无人机载SAR图像块效应抑制方法[J]. 系统工程与电子技术, 2023, 45(9): 2768-2776. | 
| [11] | 寇鹏, 刘永祥, 张弛, 李玮杰, 张双辉, 霍凯. 序列ISAR像复杂结构航天器在轨姿态估计[J]. 系统工程与电子技术, 2023, 45(8): 2438-2445. | 
| [12] | 王宁, 贺鹏超, 卢景月, 刘曦. 基于DOA估计的前视多通道SAR成像方法[J]. 系统工程与电子技术, 2023, 45(8): 2471-2478. | 
| [13] | 王鹏飞, 詹珩艺, 孙洪忠. 双基前视雷达二维空变补偿频域成像方法[J]. 系统工程与电子技术, 2023, 45(7): 1990-2001. | 
| [14] | 朱瀚神, 胡文华, 郭宝锋, 焦丽婷, 朱晓秀, 朱常安. 双基地ISAR稀疏孔径机动目标MTRC补偿成像算法[J]. 系统工程与电子技术, 2023, 45(7): 2022-2030. | 
| [15] | 汪俊澎, 邢世其, 李永祯, 黄大通, 宋少秋. 基于时频交叉乘积的调频连续波SAR干扰方法研究[J]. 系统工程与电子技术, 2023, 45(6): 1651-1657. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||