

系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (3): 929-938.doi: 10.12305/j.issn.1001-506X.2022.03.25
张腾飞1, 龚春林1, 粟华1,*, 薛鹏飞2
收稿日期:2021-06-08
出版日期:2022-03-01
发布日期:2022-03-10
通讯作者:
粟华
作者简介:张腾飞 (1997—), 男, 博士研究生, 主要研究方向为飞行器轨迹优化、飞行器多学科优化设计|龚春林 (1980—), 男, 教授, 博士, 主要研究方向为导弹和先进空天飞行器总体设计、飞行器多学科设计优化与武器系统仿真与效能评估|粟华 (1985—), 男, 副高级研究员, 博士研究生, 主要研究方向为多学科设计优化方法、飞行器多学科分布式协同设计环境|薛鹏飞 (1987—), 男, 工程师,博士, 主要研究方向为高超声速飞行器热防护设计、气动热分析
基金资助:Tengafei ZHANG1, Chunlin GONG1, Hua SU1,*, Pengfei XUE2
Received:2021-06-08
Online:2022-03-01
Published:2022-03-10
Contact:
Hua SU
摘要:
在考虑飞行器结构温度约束的轨迹设计问题中, 采用一般约束热流密度的轨迹优化模型存在反复迭代、不能考虑轨迹、传热之间耦合关系等缺点。针对这些问题, 提出一种传热增广的轨迹优化模型。利用空间差分将传热方程转化为一阶微分方程组, 与运动方程组成传热增广的系统状态方程, 从而能在轨迹优化中对结构温度直接进行约束。算例仿真说明了基于增广模型求解的高效性与结果的合理性; 在此基础上分析了再入轨迹与防热结构之间的相互影响关系, 对方案设计阶段的防热结构设计提供参考。
中图分类号:
张腾飞, 龚春林, 粟华, 薛鹏飞. 基于传热增广模型的轨迹优化与防热结构分析[J]. 系统工程与电子技术, 2022, 44(3): 929-938.
Tengafei ZHANG, Chunlin GONG, Hua SU, Pengfei XUE. Trajectory optimization based on heat-augmented model and analysis of thermal protection structure[J]. Systems Engineering and Electronics, 2022, 44(3): 929-938.
| 1 | 张灿, 林旭斌, 刘都群, 等. 2019年国外高超声速飞行器技术发展综述[J]. 飞航导弹, 2020, (1): 16- 20. |
| ZHANG C , LIN X B , LIU D Q , et al. A review of foreign hypersonic vehicle technology development in 2019[J]. Aerodynamic Missile Journal, 2020, (1): 16- 20. | |
| 2 | HIRSCHEL E H, CLAUS W. 高超声速飞行器气动热力学设计问题精选[M]. 唐志共等, 译. 北京: 国防工业出版社, 2013: 1-12, 89-92. |
| HIRSCHEL E H, CLAUS W. Selected aerother-modynamic design problems of hypersonic flight vehicles[M]. TANG Z G, et al, Trans. Beijing: National Defense Industry Press, 2013: 1-12, 89-92. | |
| 3 | QU F , SUN D , ZUO G . A study of upwind schemes on the lami- nar hypersonic heating predictions for the reusable space vehicle[J]. Acta Astronautica, 2018, 147 (6): 412- 420. |
| 4 |
EYI S , YUMUȘAK M . Aerothermodynamic shape optimization of hypersonic blunt bodies[J]. Engineering Optimization, 2015, 47 (7): 909- 926.
doi: 10.1080/0305215X.2014.933822 |
| 5 | 孙勇. 基于改进Gauss伪谱法的高超声速飞行器轨迹优化与制导[D]. 哈尔滨: 哈尔滨工业大学, 2012: 4-10. |
| SUN Y. Trajectory optimization and guidance of hypersonic vehicle based on improved Gauss pseudospectral method[D]. Harbin: Harbin Institute of Technology, 2012: 4-10. | |
| 6 |
BETTS J T . Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21 (2): 193- 207.
doi: 10.2514/2.4231 |
| 7 |
CONWAY B . A survey of methods available for the numerical optimization of continuous dynamic systems[J]. Journal of Optimization Theory and Applications, 2012, 152 (2): 271- 306.
doi: 10.1007/s10957-011-9918-z |
| 8 |
CHAI R Q , SAVVARIS A , TSOURDOS A , et al. A review of optimization techniques in spacecraft flight trajectory design[J]. Progress in Aerospace Sciences, 2019, 109, 100543.
doi: 10.1016/j.paerosci.2019.05.003 |
| 9 |
BENSON D A , HUNTINGTON G T , THORVALDSEN T P , et al. Direct trajectory optimization and costate estimation via an orthogonal collocation method[J]. Journal of Guidance, Control, and Dynamics, 2006, 29 (6): 1435- 1440.
doi: 10.2514/1.20478 |
| 10 | ROSS I M, FAHROO F. Legendre pseudospectral approximations of optimal control problems[C]//Proc. of the New Trends in Nonlinear Dynamics and Control and Their Applications, 2003: 327-342. |
| 11 | BANKS H T , FAKHROO F . Legendre-Tau approximations for LQR feedback control of acouustic pressure fields[J]. Journal of Mathematical Systems Estimation Control, 1995, 5 (2): 271- 274. |
| 12 |
REDDIEN G W . Collocation at gauss points as a discretization in optimal control[J]. SIAM Journal on Control and Optimization, 1979, 17 (2): 298- 306.
doi: 10.1137/0317023 |
| 13 |
ZHANG Y , CHEN J , SHEN L C . Hybrid hierarchical trajectory planning for a fixed-wing UCAV performing air-to-surface multi-target attack[J]. Journal of Systems Engineering and Electronics, 2012, 23 (4): 536- 552.
doi: 10.1109/JSEE.2012.00068 |
| 14 |
WANG Z , WU Z . Six-DOF trajectory optimization for reusable launch vehicles via Gauss pseudospectral method[J]. Journal of Systems Engineering and Electronics, 2016, 27 (2): 434- 441.
doi: 10.1109/JSEE.2016.00044 |
| 15 |
WANG L , XING Q H , MAO Y F . Reentry trajectory rapid optimization for hypersonic vehicle satisfying waypoint and no-fly zone constraints[J]. Journal of Systems Engineering and Electronics, 2015, 26 (6): 1277- 1290.
doi: 10.1109/JSEE.2015.00140 |
| 16 |
ZHOU J , SHAO L , WANG H J , et al. Optimal midcourse trajectory planning considering the capture region[J]. Journal of Systems Engineering and Electronics, 2018, 29 (3): 587- 600.
doi: 10.21629/JSEE.2018.03.16 |
| 17 |
TIAN B L , FAN W R . Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase[J]. IEEE Trans.on Industrial Electronics, 2015, 62 (3): 1639- 1650.
doi: 10.1109/TIE.2014.2341553 |
| 18 | SAGLIANO M , MOOIJ E , THEIL S . Onboard trajectory gene- ration for entry vehicles via adaptive multivariate pseudospectral interpolation[J]. Journal of Guidance, Control, and Dynamics, 2016, 40 (2): 466- 476. |
| 19 |
LIU X F , SHEN Z J . Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (2): 227- 241.
doi: 10.2514/1.G001210 |
| 20 |
LU P , XUE S B . Rapid generation of accurate entry landing footprints[J]. Journal of Guidance, Control, and Dynamics, 2010, 33 (3): 756- 767.
doi: 10.2514/1.46833 |
| 21 |
RIZVI S T I , HE L S , XU D J . Optimal trajectory and heat load analysis of different shape lifting reentry vehicles for me-dium range application[J]. Defence Technology, 2015, 11 (4): 350- 361.
doi: 10.1016/j.dt.2015.06.003 |
| 22 | ISTRATIE V. Optimal skip entry into atmosphere with minimum heat[C]//Proc. of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2003. |
| 23 | TU L H, YUAN J P, FANG Q, et al. Reentry skipping tra- jectory optimization using direct parameter optimization method[C]// Proc. of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, 2006. |
| 24 | WANG W K, HOU Z X, LIU D N, et al. Heat-augmented trajectory optimization of hypersonic cruise vehicle[C]//Proc. of the 21st AIAA International Space Planes and Hypersonics Technologies Conference, 2017. |
| 25 |
WANG W K , HOU Z X , LIU D N , et al. Periodically cruising hypersonic vehicle with active cooling: an optimal-control based design approach[J]. IEEE Access, 2019, 7, 65486- 65505.
doi: 10.1109/ACCESS.2019.2918848 |
| 26 | 赵汉元. 飞行器再入动力学和制导[M]. 长沙: 国防科技大学出版社, 1997: 74- 87. |
| ZHAO H Y . Reentry dynamics and guidance[M]. Changsha: Press of National University of Defense Technology, 1997: 74- 87. | |
| 27 | 刘双. 高超声速飞行器热防护系统主动冷却机制与效能评估[D]. 哈尔滨: 哈尔滨工业大学, 2010: 28-33. |
| LIU S. Active cooling mechanism and cooling capacity evaluation of thermal protection systems for hypersonic vehicle[D]. Harbin: Harbin Institute of Technology, 2010: 28-33. | |
| 28 |
LIU X S , FU Q G , ZHANG J P , et al. Design of a novel all-carbon multi-layer structure with excellent thermal protection performance based on carbon/carbon composites and carbon foam[J]. Ceramics International, 2020, 46 (18, Part A): 28887- 28893.
doi: 10.1016/j.ceramint.2020.08.056 |
| 29 |
BLOSSER M L . Fundamental modeling and thermal perfor- mance issues for metallic thermal protection system concept[J]. Journal of Spacecraft and Rockets, 2004, 41 (2): 195- 206.
doi: 10.2514/1.9182 |
| 30 | MYERS D E, MARTIN C J, BLOSSER M L. Parametric weight comparison of advanced metallic, ceramic tile, and ceramic blanket thermal protection systems. [R]. NASA Center for Aerospace Information, 2000: 1-46. |
| 31 | PHILLIPS T H, CORPORATION S. A common aero vehicle (CAV) model, description, and employment guide[EB/OL]. [2021-06-01]. https://www.doc88.com/p-501932383682.html. |
| [1] | 王冠, 茹海忠, 张大力, 马广程, 夏红伟. 弹性高超声速飞行器智能控制系统设计[J]. 系统工程与电子技术, 2022, 44(7): 2276-2285. |
| [2] | 史浩然, 卢发兴, 祁江鑫, 杨光. 基于辅助信标的无人机协同目标跟踪[J]. 系统工程与电子技术, 2022, 44(7): 2302-2310. |
| [3] | 胥涯杰, 鲜勇, 李邦杰, 任乐亮, 李少朋, 郭玮林. 基于神经网络的高超声速飞行器惯导系统精度提高方法[J]. 系统工程与电子技术, 2022, 44(4): 1301-1309. |
| [4] | 韦俊宝, 李海燕, 李静. 高超声速飞行器新型攻角约束反演控制[J]. 系统工程与电子技术, 2022, 44(4): 1310-1317. |
| [5] | 安通, 王鹏, 王建华, 汤国建, 潘玉龙, 陈海山. 弹性高超声速飞行器动态面制导控制一体化设计方法[J]. 系统工程与电子技术, 2022, 44(3): 956-966. |
| [6] | 余雪勇, 朱烨, 邱礼翔, 朱洪波. 基于无人机辅助边缘计算系统的节能卸载策略[J]. 系统工程与电子技术, 2022, 44(3): 1022-1029. |
| [7] | 张君彪, 熊家军, 兰旭辉, 李凡, 刘文俭, 席秋实. 基于自适应滤波的高超声速滑翔目标三维跟踪算法[J]. 系统工程与电子技术, 2022, 44(2): 628-636. |
| [8] | 岳彩红, 唐胜景, 郭杰, 王肖, 张浩强. 高超声速伸缩式变形飞行器再入轨迹快速优化[J]. 系统工程与电子技术, 2021, 43(8): 2232-2243. |
| [9] | 郭建国, 苏亚鲁. 高超飞行器自适应动态规划的控制系统设计[J]. 系统工程与电子技术, 2021, 43(6): 1628-1635. |
| [10] | 田明明, 廖桂生, 李云鹏, 朱圣棋. 超高速平台载雷达杂波特性与抑制方法[J]. 系统工程与电子技术, 2020, 42(2): 301-308. |
| [11] | 王成, 王旭刚. 高超声速制导炮弹终端滑模控制[J]. 系统工程与电子技术, 2020, 42(12): 2859-2866. |
| [12] | 牛立强, 钟翔宁, 武沛羽, 谢拥军. 高超声速飞行器上可调天线的设计与实现[J]. 系统工程与电子技术, 2020, 42(10): 2149-2155. |
| [13] | 李世杰, 雷虎民, 周池军, 张涛. 基于控制变量估计的高超声速再入滑翔目标轨迹预测算法[J]. 系统工程与电子技术, 2020, 42(10): 2320-2327. |
| [14] | 王高岳, 张慧君, 陈贤, 李昊. 基于高斯过程回归的大气进入段航天器飞行能力预测方法[J]. 系统工程与电子技术, 2020, 42(10): 2334-2339. |
| [15] | 潘媚媚, 曹运合, 王宇, 吴文华. 基于机动判别的变结构交互多模型跟踪算法[J]. 系统工程与电子技术, 2019, 41(4): 730-736. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||