系统工程与电子技术 ›› 2019, Vol. 41 ›› Issue (6): 1324-1335.doi: 10.3969/j.issn.1001-506X.2019.06.21

• 系统工程 • 上一篇    下一篇

基于神经网络的仿真优化算法设计

吴诗辉1, 张发2, 李正欣1, 刘晓东1   

  1. 1. 空军工程大学装备管理与无人机工程学院, 陕西 西安 710051;
    2. 北京理工大学珠海学院商学院, 广东 珠海 519088
  • 出版日期:2019-05-27 发布日期:2019-05-28

Design of algorithm for neural network based optimization via simulation

WU Shihui1, ZHANG Fa2, LI Zhengxin1, LIU Xiaodong1   

  1. 1. Equipment Management and UAV Engineering College, Air Force Engineering University, Xi’an 710051, China;
    2. Business School,Beijing Institute of Technology, Zhuhai 519000, China
  • Online:2019-05-27 Published:2019-05-28

摘要: 为降低传统仿真优化方法所需的仿真次数,从而缩短仿真优化时间,提出了基于广义回归神经网络(generalized regression neural network,GRNN)的仿真优化算法设计。首先,利用仿真生成一定数量的样本集,利用GRNN进行训练,得到初始回归曲面,并在该曲面上利用模式搜索算法找出全部可能的局部极小,由于可能会找到一些假局部极小点——噪声点,设计了剔除噪声点的方法,得到全部局部极小;在各局部极小点周围增补少量仿真样本,再次利用GRNN进行训练,得到新的回归曲面。重复增补样本,直到得到仿真优化的最优解。实例表明,所提方法能够有效降低所需样本的数量,实现仿真优化问题的求解。

关键词: 神经网络, 仿真优化, 局部极小, 样本增补

Abstract: To reduce the time required on simulation runs of traditional optimization via simulation (OvS) method, a design of algorithm is proposed for generalized regression neural network (GRNN) based OvS. Firstly, some inputoutput samples are obtained by simulation, based on which the GRNN is trained and the initial regression surface that represents the inputoutput relationship of the simulation is obtained by the trained GRNN. Then, by adopting pattern search algorithm on the initial regression surface, all possible local minima points are found, including some fake points that are not local minima. Therefore, a method is proposed to identify those fake points so that only local minima points are located. Next, samples replenishing strategies are given to replenish some samples near each local minima, and the GRNN is trained upon the new samples made up of the initial and replenished samples, which can form an amendatory regression surface. Repeat the process of replenishing new samples until the optimal solution of the OvS can be obtained. An experiment is taken on a typical test function, and the results show that our method can solve the OvS problem while effectively reducing the required simulation samples.

Key words: neural network, optimization via simulation (OvS), local minima, samples replenishment