系统工程与电子技术 ›› 2026, Vol. 48 ›› Issue (1): 209-217.doi: 10.12305/j.issn.1001-506X.2026.01.19

• 系统工程 • 上一篇    下一篇

基于反馈特征提取和因果反演辨识的自主智能系统效能评估方法

余晨浩1,2(), 常雷雷1,2, 周宇2,*, 孙建彬3   

  1. 1. 杭州电子科技大学自动化学院,浙江 杭州 310018
    2. 西安电子科技大学协同智能系统教育部重点实验室,陕西 西安 710126
    3. 国防科技大学系统工程学院,湖南 长沙 410073
  • 收稿日期:2024-10-08 出版日期:2026-01-25 发布日期:2026-02-11
  • 通讯作者: 周宇 E-mail:231060041@hdu.edu.cn
  • 作者简介:余晨浩(2001—)男,博士研究生,主要研究方向为数据挖掘、机器学习、复杂系统设计
    常雷雷(1985—),男,副研究员,博士,主要研究方向为复杂作战条件下的决策分析及能力评估
    孙建彬(1989—),男,副教授,博士,主要研究方向为体系能力评估、体系发展规划
  • 基金资助:
    国家自然科学基金(72471067,72471238)资助课题

Performance evaluation method for autonomous intelligent system using feedback-based attribute extraction and anti-causality

Chenhao YU1,2(), Leilei CHANG1,2, Yu ZHOU2,*, Jianbin SUN3   

  1. 1. School of Automation,Hangzhou Dianzi University, Hangzhou 310018, China
    2. Key Laboratory of Collaborative Intelligence Systems, Ministry of Education,Xidian University, Xi’an 710126 China
    3. College of Systems Engineering,National University of Defense Technology, Changsha 410073, China
  • Received:2024-10-08 Online:2026-01-25 Published:2026-02-11
  • Contact: Yu ZHOU E-mail:231060041@hdu.edu.cn

摘要:

为解决以无人系统为代表的自主智能系统在实际和仿真实验中产生的海量数据特征超载和因果关系不一致的问题,提出基于反馈闭环策略的特征提取方法。首先,在传统特征约简基础上,反向提取原始数据空间中的特征。然后,基于因果反演的数据辨识方法,通过计算数据因果逻辑关系一致性来辨识并排除与主要数据因果关系不一致的因果反演数据。最后,以无人系统作为示例的验证结果表明,在仅保留54.14%原始信息的情况下,系统效能评估误差降低约12.43%。所提方法具有较强的泛化能力,以及模型独立性和鲁棒性。

关键词: 反馈特征提取, 因果反演辨识, 自主智能系统, 效能评估

Abstract:

To solve the problem of massive data feature overload and anti-causal data in real and simulated tests, a feature extraction method is proposed based on feedback closed-loop strategy. Firstly, extracts features from the original data space in reverse based on traditional feature reduction. Secondly, data identification method based on anti-causality identification, which identifies and excludes anti-causality data by calculating the consistency of causal logical relationships of data. Finally, the verification results using unmanned systems as an example show that, while retaining only 54.14% of the original information, system performance evaluation error reduced by approximately 12.43%. The method proposed has strong generalization ability, model independence and robustness.

Key words: feedback-based attribute extraction, anti-causality identification, autonomous intelligent system, performance evaluation

中图分类号: