

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (12): 4186-4195.doi: 10.12305/j.issn.1001-506X.2025.12.30
• 通信与网络 • 上一篇
收稿日期:2024-10-28
修回日期:2024-12-04
出版日期:2025-04-22
发布日期:2025-04-22
通讯作者:
王震铎
E-mail:1249203077@qq.com
作者简介:孙志国(1977—),男,教授,博士,主要研究方向为认知数据链、无线通信与防护基金资助:
Zhiguo SUN, Chuanling LIU(
), Zhenduo WANG
Received:2024-10-28
Revised:2024-12-04
Online:2025-04-22
Published:2025-04-22
Contact:
Zhenduo WANG
E-mail:1249203077@qq.com
摘要:
针对传统效能评估方法无法及时获取评估结果的问题,提出一种混合双链量子遗传算法的在线评估方法。所提算法在量子门更新中采用了一种新的旋转角变化方式,根据目标函数的梯度变化和迭代次数自适应调整角度大小,同时引入量子全干扰交叉和精英个体保留策略,提高了算法的全局搜索能力和收敛速度。仿真结果表明,与其他算法相比,所提算法在不同优化问题的标准测试函数中,性能表现更好。在干扰评估方面,优化后的模型准确率提升约4.5%,能更精确反映干扰效果,且评估结果相较于传统效能评估更具时效性。
中图分类号:
孙志国, 刘传令, 王震铎. 基于混合双链量子遗传算法的干扰效能评估方法[J]. 系统工程与电子技术, 2025, 47(12): 4186-4195.
Zhiguo SUN, Chuanling LIU, Zhenduo WANG. Interference efficiency evaluation method based on hybrid double chain quantum genetic algorithm[J]. Systems Engineering and Electronics, 2025, 47(12): 4186-4195.
表1
不同算法的参数设置"
| 优化算法 | 参数 | 数值 |
| QGA | 量子变异概率 | |
| 固定旋转角 | ||
| DCQGA | 量子变异概率 | |
| 初始相位角 | ||
| FDCQGA[ | 量子变异概率 | |
| 初始相位角 | ||
| IQGA[ | 最大权重 | |
| 最小权重 | ||
| HDCQGA | 量子交叉概率 | |
| 量子变异概率 | ||
| 最大相位角 | ||
| 最小相位角 | ||
| 调整因子 |
表2
不同算法的函数优化结果对比"
| 算法 | F1 | F2 | |||||
| 均值 | 方差 | 最优值 | 均值 | 方差 | 最优值 | ||
| QGA | 1.53×10−9 | 1.08×10−4 | 1.31×10−4 | ||||
| DCQGA | 7.73×10−5 | 5.79×10−3 | |||||
| FDCQGA | 8.05×10−6 | 3.16×10−6 | 2.17×10−4 | ||||
| IQGA | 1.87×10−5 | 2.09×10−5 | 2.23×10−4 | 1.74×10−4 | |||
| HDCQGA | 2.09×10−7 | 1.60×10-11 | 1.19×10−6 | 6.50×10−8 | |||
| 算法 | F3 | F4 | |||||
| 均值 | 方差 | 最优值 | 均值 | 方差 | 最优值 | ||
| QGA | 6.14×10−6 | 2.47×10−5 | |||||
| DCQGA | 9.93×10−6 | 1.33×10−5 | |||||
| FDCQGA | 1.07×10−5 | 1.78×10−7 | |||||
| IQGA | 1.01×10−5 | 6.88×10-10 | |||||
| HDCQGA | 1.33×10−5 | 7.35×10−4 | 1.06×10-11 | ||||
| 算法 | F5 | F6 | |||||
| 均值 | 方差 | 最优值 | 均值 | 方差 | 最优值 | ||
| QGA | −182.500 | −186.731 | − | − | |||
| DCQGA | −183.386 | −186.561 | − | − | |||
| FDCQGA | −184.861 | −186.723 | − | − | |||
| IQGA | −185.005 | −186.729 | − | 1.49×10−4 | − | ||
| HDCQGA | −185.025 | −186.731 | − | 4.50×10−4 | − | ||
| 1 |
ZHANG C D, WANG L, JIANG R D, et al. Radar jamming decision-making in cognitive electronic warfare: a review[J]. IEEE Sensors Journal, 2023, 23 (11): 11383- 11403.
doi: 10.1109/JSEN.2023.3267068 |
| 2 | ZHANG W X, WANG Y J, ZHAO Z K, et al. An online jamming effect evaluation method for asymmetric radar information in complex electromagnetic environment[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 3508505. |
| 3 |
黄知涛, 王翔, 赵雨睿. 认知电子战综述[J]. 国防科技大学学报, 2023, 45 (5): 1- 11.
doi: 10.11887/j.cn.202305001 |
|
HUANG Z T, WANG X, ZHAO Y R. Overview of cognitive electronic warfare[J]. Journal of National University of Defense Technology, 2023, 45 (5): 1- 11.
doi: 10.11887/j.cn.202305001 |
|
| 4 |
MCWHORTER T, MORYS M, SEVERYN S, et al. Machine learning aided electronic warfare system[J]. IEEE Access, 2021, 9, 94691- 94699.
doi: 10.1109/ACCESS.2021.3093569 |
| 5 |
胡向东, 吕高飞, 白银. 基于优化支持向量回归的工业互联网安全态势预测方法[J]. 电子学报, 2023, 51 (2): 446- 454.
doi: 10.12263/DZXB.20210558 |
|
HU X D, LV G F, BAI Y. A method of security situation prediction for industrial internet based on optimized support vector regression[J]. Acta Electronica Sinica, 2023, 51 (2): 446- 454.
doi: 10.12263/DZXB.20210558 |
|
| 6 | 崔文竣吉, 陈旗, 龚辉. 基于GA-BP神经网络的雷达干扰效能评估方法[J]. 信息对抗技术, 2023, 2 (6): 85- 96. |
| CUI W J J, CHEN Q, GONG H. Effectiveness evaluation method of radar jamming based on GA-BP neural network[J]. Information Countermeasure Technology, 2023, 2 (6): 85- 96. | |
| 7 | 郑威迪, 李志刚, 贾涵中, 等. 基于改进型鲸鱼优化算法和最小二乘支持向量机的炼钢终点预测模型研究[J]. 电子学报, 2019, 47 (3): 700- 706. |
| ZHENG W D, LI Z G, JIA H Z, et al. Research on prediction model of steelmaking end point based on LWOA and LSSVM[J]. Acta Electronica Sinica, 2019, 47 (3): 700- 706. | |
| 8 |
DADKHAH D, ZOMORODI M, HOSSEINI S E, et al. Reordering and partitioning of distributed quantum circuits[J]. IEEE Access, 2022, 10, 70329- 70341.
doi: 10.1109/ACCESS.2022.3186485 |
| 9 | WANG H X, LIU J Y, ZHI J, et al. The improvement of quantum genetic algorithm and its application on function optimization[J]. Mathematical Problems in Engineering, 2013, 2013, 730749. |
| 10 |
李士勇, 李盼池. 基于实数编码和目标函数梯度的量子遗传算法[J]. 哈尔滨工业大学学报, 2006, 38 (8): 1216- 1218,1223.
doi: 10.3321/j.issn:0367-6234.2006.08.002 |
|
LI S Y, LI P C. Quantum genetic algorithm based on real encoding and gradient information of object function[J]. Journal of Harbin Institute of Technology, 2006, 38 (8): 1216- 1218,1223.
doi: 10.3321/j.issn:0367-6234.2006.08.002 |
|
| 11 |
SHI L Q, HE Y G, LUO Q W, et al. Tilt angle on-line prognosis by using improved sparse LSSVR and dynamic sliding window[J]. IEEE Trans. on Instrumentation and Measurement, 2018, 67 (2): 296- 306.
doi: 10.1109/TIM.2017.2764238 |
| 12 | GUO Q, QI L G. Combining DCQGMP-based sparse decomposition and MPDR beamformer for multi-type interferences mitigation for GNSS receivers[J]. Sensors, 2017, 17 (4): 813. |
| 13 |
GUO Q, RUAN G Q, WAN J. A sparse signal reconstruction method based on improved double chains quantum genetic algorithm[J]. Symmetry-Basel, 2017, 9 (9): 178.
doi: 10.3390/sym9090178 |
| 14 | NING X Y, WANG Y, WANG Z D, et al. Link-16 anti-jamming performance evaluation based on grey relational analysis and cloud model[J]. Journal of Systems Engineering and Electronics, 2025, 36 (1): 62- 72. |
| 15 | ZHU W L, LIU S L, XIE H X, et al. An online evaluation method based on entropy-topsis radar interference effect[C]//Proc. of the IEEE International Conference on Artificial Intelligence and Computer Applications , 2020: 606−609. |
| 16 |
ZHANG B W, PEDRYCZ W, FAYEK A R, et al. A differential evolution-based consistency improvement method in AHP with an optimal allocation of information granularity[J]. IEEE Trans. on Cybernetics, 2022, 52 (7): 6733- 6744.
doi: 10.1109/TCYB.2020.3035909 |
| 17 |
WANG J, HAO Y L, YANG C. A comprehensive prediction model for vhf radio wave propagation by integrating entropy weight theory and machine learning methods[J]. IEEE Trans. on Antennas and Propagation, 2023, 71 (7): 6249- 6254.
doi: 10.1109/TAP.2023.3266840 |
| 18 |
孙志国, 肖硕, 吴毅杰, 等. 面向认知通信防护的穿透式干扰效能评估方法[J]. 通信学报, 2023, 44 (11): 161- 172.
doi: 10.11959/j.issn.1000-436x.2023195 |
|
SUN Z G, XIAO S, WU Y J, et al. Evaluation method of penetrating jamming effectiveness for cognitive communication protection[J]. Journal on Communications, 2023, 44 (11): 161- 172.
doi: 10.11959/j.issn.1000-436x.2023195 |
|
| 19 |
ZHAO L Q, YAN L, DUAN X J, et al. A Bayesian multistage fusion model for radar antijamming performance evaluation[J]. IEEE Trans. on Aerospace and Electronic Systems, 2024, 60 (1): 729- 740.
doi: 10.1109/TAES.2023.3328972 |
| 20 | YANG Y Q, ZHANG X Q. A modified method for digital modulation recognition based on instantaneous signal features [C]// Proc. of the 3rd International Conference on Electronic Information Technology and Computer Engineering, 2019: 1351−1354. |
| 21 |
ZHEN P, ZHANG B N, CHEN Z B, et al. Spectrum sensing method based on wavelet transform and residual network[J]. IEEE Wireless Communications Letters, 2022, 11 (12): 2517- 2521.
doi: 10.1109/LWC.2022.3207296 |
| 22 |
WANG Y, LIU M, YANG J, et al. Data-driven deep learning for automatic modulation recognition in cognitive radios[J]. IEEE Trans. on Vehicular Technology, 2019, 68 (4): 4074- 4077.
doi: 10.1109/TVT.2019.2900460 |
| 23 |
SANNIGRAHI M, THANDEESWARAN R. Predictive analysis of network-based attacks by hybrid machine learning algorithms utilizing Bayesian optimization, logistic regression, and random forest algorithm[J]. IEEE Access, 2024, 12, 142721- 142732.
doi: 10.1109/ACCESS.2024.3464866 |
| 24 |
PAUL A, MUKHERJEE D P, DAS P, et al. Improved random forest for classification[J]. IEEE Trans. on Image Processing, 2018, 27 (8): 4012- 4024.
doi: 10.1109/TIP.2018.2834830 |
| 25 | ZHANG B C, CHEN S Y, GAO S Y, et al. Combination balance correction of grinding disk based on improved quantum genetic algorithm[J]. IEEE Trans. on Instrumentation and Measurement, 2023, 72, 1000112. |
| 26 |
ZHU X T, XIONG J B, LIANG Q. Fault diagnosis of rotation machinery based on support vector machine optimized by quantum genetic algorithm[J]. IEEE Access, 2018, 6, 33583- 33588.
doi: 10.1109/ACCESS.2018.2789933 |
| 27 |
GHAEMINEZHAD N, CONG S. Preparation of hadamard gate for open quantum systems by the Lyapunov control method[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5 (3): 733- 740.
doi: 10.1109/JAS.2018.7511084 |
| 28 | NARAYANAN A, MOORE M. Quantum-inspired genetic algorithms[C]//Proc. of the IEEE International Conference on Evolutionary Computation, 1996: 61–66. |
| 29 | 国强, 孙宇枭. 改进的双链量子遗传算法在图像去噪中的应用[J]. 哈尔滨工业大学学报, 2016, 48 (5): 140- 147. |
| GUO Q, SUN Y X. The application of improved double stranded quantum genetic algorithm in image denoising[J]. Journal of Harbin Institute of Technology, 2016, 48 (5): 140- 147. | |
| 30 |
WANG H Z, XU S, HU H S. PID controller for PMSM speed control based on improved quantum genetic algorithm optimization[J]. IEEE Access, 2023, 11, 61091- 61102.
doi: 10.1109/ACCESS.2023.3284971 |
| 31 |
YANG X S, KARAMANOGLU M, HE X S. Flower pollination algorithm: a novel approach for multiobjective optimization[J]. Engineering Optimization, 2014, 46 (9): 1222- 1237.
doi: 10.1080/0305215X.2013.832237 |
| 32 | HOU D T, QI Z F, JIANG T, et al. Effectiveness evaluation method for warning radar in jamming environment[C]//Proc. of the Chinese Control and Decision Conference , 2018: 1755−1760. |
| [1] | 邹世培, 王玉惠, 刘鸿睿. 基于RF-XGBoost算法的无人机多回合攻防博弈决策[J]. 系统工程与电子技术, 2025, 47(2): 518-526. |
| [2] | 吴嘉俊, 苏春, 张玉茹. 基于双重自注意力机制和长短时记忆网络的剩余寿命预测[J]. 系统工程与电子技术, 2024, 46(6): 1986-1994. |
| [3] | 李海, 田众, 钱君. 基于ECOC平衡随机森林的雷达降水粒子分类[J]. 系统工程与电子技术, 2024, 46(5): 1599-1606. |
| [4] | 程绍驰, 游光荣. 基于改进随机森林算法的评估指标精简方法研究[J]. 系统工程与电子技术, 2023, 45(7): 2108-2113. |
| [5] | 任博, 岳珠峰, 司勇, 崔利杰, 曾航. 基于随机森林的航空安全因果预测新方法[J]. 系统工程与电子技术, 2023, 45(3): 762-768. |
| [6] | 方坤, 李晓辉, 樊韬. 基于随机森林权重补偿的无人机高精度定位算法[J]. 系统工程与电子技术, 2023, 45(1): 202-209. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||