系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (2): 561-569.doi: 10.12305/j.issn.1001-506X.2024.02.20
• 系统工程 • 上一篇
胡涛, 申立群, 朱镜达, 孙成会, 董伟锋
收稿日期:
2022-12-20
出版日期:
2024-01-25
发布日期:
2024-02-06
通讯作者:
申立群
作者简介:
胡涛(1976—), 男, 副教授, 博士, 主要研究方向为先进仿真与体系建模技术、效能评估、图像处理Tao HU, Liqun SHEN, Jingda ZHU, Chenghui SUN, Weifeng DONG
Received:
2022-12-20
Online:
2024-01-25
Published:
2024-02-06
Contact:
Liqun SHEN
摘要:
为了以较小的代价快速提升对空探测雷达系统的综合效能, 首先搭建了对空探测雷达系统综合效能的评估指标体系, 在此基础上完成了综合效能评估模型的建立。选择两种基于方差原理的全局敏感性分析方法, 即傅里叶幅度敏感性测试(Fourier amplitudes sensitivity test, FAST)和Sobol指数法, 分别从频域和时域对建立的评估模型进行敏感性分析。在基于FAST进行敏感性分析时, 提出了21维输入指标所对应的特征频率集的选取方法; 在基于Sobol指数法进行敏感性分析时, 考虑了二阶及高阶敏感性指数的影响。对比FAST和Sobol指数法的分析结果, 两种方法获得的敏感性分析结果具有较好的一致性。其中, 功率和频率为对空探测雷达系统的主要影响指标, 为雷达系统的研发和升级提供了可靠性依据。
中图分类号:
胡涛, 申立群, 朱镜达, 孙成会, 董伟锋. 基于FAST和Sobol指数法的雷达系统效能敏感性分析[J]. 系统工程与电子技术, 2024, 46(2): 561-569.
Tao HU, Liqun SHEN, Jingda ZHU, Chenghui SUN, Weifeng DONG. Sensitivity analysis of radar system effectiveness based on FAST and Sobol index method[J]. Systems Engineering and Electronics, 2024, 46(2): 561-569.
表1
指标权重汇总"
能力层 | 权重 | 指标层 | 权重 | 全局权重 |
空域探测能力 | 0.320 4 | 多目标处理性能 | 0.200 0 | 0.064 1 |
最大作用距离 | 0.400 0 | 0.128 2 | ||
方位观察范围 | 0.200 0 | 0.064 1 | ||
俯仰观察范围 | 0.200 0 | 0.064 1 | ||
目标测量能力 | 0.242 6 | 距离测量精度 | 0.250 0 | 0.060 6 |
方位角测量精度 | 0.250 0 | 0.060 6 | ||
俯仰角测量精度 | 0.250 0 | 0.060 6 | ||
速度测量精度 | 0.250 0 | 0.060 7 | ||
抗干扰能力 | 0.124 7 | 抗主瓣干扰性能 | 0.249 2 | 0.031 1 |
抗副瓣干扰性能 | 0.326 9 | 0.040 8 | ||
频率捷变 | 0.141 3 | 0.017 6 | ||
频率分集 | 0.141 3 | 0.017 6 | ||
旁瓣相消 | 0.141 3 | 0.017 6 | ||
数据处理能力 | 0.164 7 | 数据处理速度 | 0.400 0 | 0.065 9 |
数据容量 | 0.200 0 | 0.032 9 | ||
系统识别技术 | 0.400 0 | 0.065 9 | ||
生存与适应能力 | 0.147 6 | 系统可靠性 | 0.500 0 | 0.073 8 |
环境适应性 | 0.250 0 | 0.036 9 | ||
抗毁伤性 | 0.250 0 | 0.036 9 |
表6
FAST方法和Sobol指数法的敏感性分析结果"
指标名称 | FAST主效应 | Sobol主效应 | Sobol全效应 |
同时处理目标数目 | 0.053 6 | 0.053 2 | 0.053 2 |
发射机平均功率 | 0.210 3 | 0.212 6 | 0.212 5 |
天线有效孔径面积 | 0.091 7 | 0.091 4 | 0.092 0 |
信号重复周期 | 0.023 0 | 0.024 1 | 0.024 2 |
雷达系统损耗 | 0.024 5 | 0.025 2 | 0.024 8 |
信噪比 | 0.011 9 | 0.013 6 | 0.013 8 |
工作频率 | 0.157 1 | 0.156 4 | 0.157 1 |
俯仰观察范围 | 0.037 2 | 0.036 4 | 0.036 4 |
雷达信号带宽 | 0.013 4 | 0.014 5 | 0.014 5 |
半功率点水平宽度 | 0.013 2 | 0.013 7 | 0.013 7 |
半功率点垂直宽度 | 0.003 3 | 0.003 2 | 0.003 2 |
频率捷变 | 0.008 1 | 0.008 1 | 0.008 1 |
频率分集 | 0.007 2 | 0.006 2 | 0.006 2 |
旁瓣相消 | 0.008 1 | 0.008 3 | 0.008 3 |
数据处理速度 | 0.100 5 | 0.099 5 | 0.099 5 |
数据容量 | 0.028 3 | 0.027 6 | 0.027 6 |
系统识别技术 | 0.100 5 | 0.099 4 | 0.099 4 |
平均无故障时间 | 0.019 5 | 0.017 9 | 0.018 9 |
平均维修时间 | 0.019 3 | 0.019 8 | 0.020 8 |
环境适应性 | 0.031 5 | 0.031 9 | 0.031 9 |
抗毁伤性 | 0.035 6 | 0.035 2 | 0.035 2 |
1 |
HAN W , TANG Z Y , ZHU Z B . Method of target tracking with Doppler blind zone constraint[J]. Journal of Systems Engineering and Electronics, 2013, 24 (6): 889- 898.
doi: 10.1109/JSEE.2013.00103 |
2 |
ACCARDO D , FASANO G , FORLENZA L , et al. Flight test of a radar-based tracking system for UAS sense and avoid[J]. IEEE Trans. Aerospace and Electronic Systems, 2013, 49 (2): 1139- 1160.
doi: 10.1109/TAES.2013.6494404 |
3 | 王国恩, 李仙茂, 厉春生. 海上舰机综合雷达对抗侦察效能分析[J]. 电子信息对抗技术, 2016, 31 (6): 69- 75. |
WANG G E , LI X M , LI C S . Comprehensive radar countermeasure reconnaissance effectiveness analysis of the warship and aircraft on sea[J]. Electronic Information Warfare Technology, 2016, 31 (6): 69- 75. | |
4 | 滕俊, 郭万海, 崔超. 防空作战中相控阵雷达信息综合保障效能分析[J]. 舰船电子工程, 2011, 31 (8): 63-66, 75. |
TENG J , GUO W H , CUI C . Analysis of the phased array radar's integrated information support effectiveness in air defense[J]. Ship Electronic Engineering, 2011, 31 (8): 63-66, 75. | |
5 | 胡国庭, 李侠, 王万磊, 等. 地空导弹系统近方雷达情报保障效能评估[J]. 空军雷达学院学报, 2006, 20 (1): 5-7, 17. |
HU G T , LI X , WANG W L , et al. Assessment of intelligence support effectiveness of close-in radar for surface-to-air missile system[J]. Electronic Information Warfare Technology, 2006, 20 (1): 5-7, 17. | |
6 |
SALTELLI A . Making best use of model evaluations to compute sensitivity indices[J]. Computer Physics Communications, 2002, 145 (2): 280- 297.
doi: 10.1016/S0010-4655(02)00280-1 |
7 | BORGONOVO E , PECCATI L . Uncertainty and global sensitivity analysis in the evaluation of investment projects[J]. International Journal of Production Economics, 2005, 104 (1): 62- 73. |
8 | SONG X M , KONG F Z , ZHAN C S , et al. Parameter identification and global sensitivity analysis of Xin'anjiang model using meta-modeling approach[J]. Water Science and Engineering, 2013, 6 (1): 1- 17. |
9 |
FREY H C , PATIL S R . Identification and review of sensitivity analysis methods[J]. Risk Analysis, 2002, 22 (3): 553- 578.
doi: 10.1111/0272-4332.00039 |
10 |
MASSMANN C , HOLZMANN H . Analysis of the behavior of a rainfall-runoff model using three global sensitivity analysis methods evaluated at different temporal scales[J]. Journal of Hydrology, 2012, 475, 97- 110.
doi: 10.1016/j.jhydrol.2012.09.026 |
11 |
CONNOR J D , SUMMERS D , REGAN C , et al. Sensitivity analysis in economic evaluation of payments for water and carbon ecosystem services[J]. Ecosystem Services, 2022, 54, 101416.
doi: 10.1016/j.ecoser.2022.101416 |
12 |
LIU C , LIN D T , FAN J J , et al. Evaluation of housing price control policies based on a sensitivity analysis and nonstationary Markov chain simulation: empirical evidence from China[J]. Emerging Markets Finance and Trade, 2021, 57 (2): 311- 321.
doi: 10.1080/1540496X.2018.1517644 |
13 |
WELI S S , VIGH L G . Blast reliability assessment and sensitivity analysis of steel MRFs equipped with NiTi SMA bolts[J]. Engineering Structures, 2023, 286, 116137.
doi: 10.1016/j.engstruct.2023.116137 |
14 |
DENG G M , FAN D W , ZHANG B F , et al. Sensitivity analysis of large body of control parameters in machine learning control of a square-back Ahmed body[J]. Proceedings of the Royal Society A, 2023, 479 (2269): 20220280.
doi: 10.1098/rspa.2022.0280 |
15 | NAKAYAMA T , WANG Q , OKADERA T . Sensitivity analysis and parameter estimation of anthropogenic water uses for quantifying relation between groundwater overuse and water stress in Mongolia[J]. Ecohydrology & Hydrobiology, 2021, 21 (3): 490- 500. |
16 |
MAMAT N , MOHD R S F , HAMZAH F B . Enhancement of water quality index prediction using support vector machine with sensitivity analysis[J]. Frontiers in Environmental Science, 2023,
doi: 10.3389/fenvs.2022.1061835 |
17 | 李红祺. 随机平衡设计傅里叶振幅敏感性分析方法和拓展傅里叶振幅敏感性分析方法在陆面过程模式敏感性分析中的应用探索[J]. 物理学报, 2015, 64 (6): 403- 409. |
LI H Q . Applications of random balance design Fourier amplitude sensitivity test and extend Fourier amplitude sensitivity test in the parameter sensitivity analysis of land surface process model[J]. Acta Physica Sinica, 2015, 64 (6): 403- 409. | |
18 | 潘星, 张振宇, 张艳梅, 等. 基于Sobol敏感性分析的装备体系保障效能评估[J]. 系统工程与电子技术, 2021, 43 (2): 390- 398. |
PAN X , ZHANG Z Y , ZHANG Y M , et al. Equipment SoS support effectiveness evaluation based on Sobol sensitivity analy- sis[J]. System Engineering and Electronics, 2021, 43 (2): 390- 398. | |
19 | MARTIN H K , STEFFEN P . Choosing the appropriate sensitivity analysis method for building energy model-based investigations[J]. Energy & Buildings, 2016, 130, 166- 176. |
20 |
SONG Y , WEI T , EDUARD C , et al. Comparison of sensitivity analysis methods in building energy assessment[J]. Procedia Engineering, 2016, 146, 174- 181.
doi: 10.1016/j.proeng.2016.06.369 |
21 | KE Y . Research on the effectiveness evaluation model of the prison physical protection system based on grey analytic hierarchy process[J]. Security and Communication Networks, 2017, 2017, 1- 9. |
22 |
CAO X Y , WANG Y D , SHI Z Y . Research on the maintenance effectiveness evaluation of electronic information equipment[J]. Journal of Physics: Conference Series, 2021, 1739, 012043.
doi: 10.1088/1742-6596/1739/1/012043 |
23 | 赵日强, 安实, 麦强, 等. 基于ADC法的防空导弹武器系统效能建模[J]. 系统工程与电子技术, 2020, 42 (9): 2003- 2012. |
ZHAO R Q , AN S , MAI Q , et al. Effectiveness modeling of air defense missile weapon system based on ADC method[J]. System Engineering and Electronics, 2020, 42 (9): 2003- 2012. | |
24 | 张光义, 赵玉洁. 相控阵雷达技术[M]. 北京: 电子工业出版社, 2006. |
ZHANG G Y , ZHAO Y J . Phased array radar technology[M]. Beijing: Electronic Industry Press, 2006. | |
25 | ZHANG Z , WANG C X , YANG H Y , et al. Broadband radar absorbing composites: spatial scale effect and environmental adaptability[J]. Composites science and Technology, 2020, 197, 108262. |
26 |
HESS R A , VETTER T K , WELLS S R . Design and evaluation of a damage-tolerant flight control system[J]. Proc. of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2005, 219 (4): 341- 359.
doi: 10.1243/095441005X7259 |
27 | 田清清, 李卫兵, 吴春霖, 等. 基于德尔菲法的感控投入成本测量指标体系构建[J]. 现代预防医学, 2023, 50 (3): 501- 508. |
TIAN Q Q , LI W B , WU C L , et al. The construction of cost measurement index system for hospital infection control inputs based on Delphi method[J]. Modern Preventive Medicine, 2023, 50 (3): 501- 508. | |
28 | WEI C , ZENG X J , WANG Z G , et al. Construction and research on the evaluation system of university curriculum teaching quality based on analytic hierarchy process[J]. Curriculum and Teaching Methodology, 2022, 5 (12): 10- 17. |
29 | XU C G , GERTNER G Z . A general first-order global sensiti-vity analysis method[J]. Reliability Engineering & System Safety, 2008, 93 (7): 1060- 1071. |
30 | SCHAIBLT J H , SHULER K E . Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. Ⅱ Applications[J]. Journal of Chemical Physics, 1973, 59 (8): 3879- 3888. |
31 | KUCHERENKO S , ZUNIGA M M , TARANTOLA S , et al. Metamodelling and global sensitivity analysis of models with dependent variables[J]. AIP Conference Proceedings, 2011, 1389 (1): 1913- 1913. |
[1] | 陆德江, 王星, 陈游, 胡星. 联合多种资源协同干扰组网雷达系统的自适应调度方法[J]. 系统工程与电子技术, 2023, 45(9): 2744-2754. |
[2] | 曹嘉平, 欧萌歆, 李易珊, 姜江, 李际超. 岛礁防空电子对抗装备体系构建与效能评估[J]. 系统工程与电子技术, 2023, 45(9): 2784-2792. |
[3] | 王奇, 陆林, 李海阳, 杨路易. 基于可控域的定点返回轨道全局敏感性分析[J]. 系统工程与电子技术, 2023, 45(11): 3606-3615. |
[4] | 朱杰, 黄宁, 程亮. 云化虚拟化网络业务可用度多参数敏感性分析[J]. 系统工程与电子技术, 2022, 44(8): 2677-2687. |
[5] | 浣顺启, 方哲梅, 王剑波. 基于功能依赖网的体系效能评估方法[J]. 系统工程与电子技术, 2022, 44(7): 2191-2200. |
[6] | 王宇卓, 朱圣棋, 李西敏, 兰岚. FDA MIMO双基雷达主瓣走动矫正距离模糊杂波抑制[J]. 系统工程与电子技术, 2022, 44(5): 1483-1494. |
[7] | 蔺向阳, 邢清华, 刘付显. 针对要点防空模型的作战兵力优化研究[J]. 系统工程与电子技术, 2022, 44(3): 921-928. |
[8] | 吴志鹏, 张平, 李震, 黄磊, 刘畅, 高硕. 基于轻小型无人机雷达的植被高度反演方法[J]. 系统工程与电子技术, 2022, 44(12): 3667-3675. |
[9] | 邱禄芸, 方志耕, 陶良彦, 陶秋澄. 网络体系效能评估改进FDNA模型[J]. 系统工程与电子技术, 2022, 44(12): 3728-3737. |
[10] | 潘星, 张振宇, 张艳梅, 王冉冉. 基于Sobol敏感性分析的装备体系保障效能评估[J]. 系统工程与电子技术, 2021, 43(2): 390-398. |
[11] | 高昂, 郭齐胜, 董志明, 杨绍卿. 基于EAS+MADRL的多无人车体系效能评估方法研究[J]. 系统工程与电子技术, 2021, 43(12): 3643-3651. |
[12] | 杨圩生, 王钰, 杨洋, 唐亮. 基于作战环的不同节点攻击策略下的作战网络效能评估[J]. 系统工程与电子技术, 2021, 43(11): 3220-3228. |
[13] | 韩驰, 熊伟. 基于改进灰狼算法优化SVR的航天侦察装备效能评估[J]. 系统工程与电子技术, 2021, 43(10): 2902-2910. |
[14] | 李彪, 王立文, 邢志伟, 罗谦. 过站航班地面保障流程效能评估[J]. 系统工程与电子技术, 2020, 42(7): 1543-1549. |
[15] | 汪民乐. 导弹力量作战行动规划综述[J]. 系统工程与电子技术, 2020, 42(12): 2825-2832. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||